HackerNews Digest Daily

Subscribe
Archives
September 17, 2023

Hacker News Top Stories with Summaries (September 18, 2023)

    <style>
        p {
            font-size: 16px;
            line-height: 1.6;
            margin: 0;
            padding: 10px;
        }
        h1 {
            font-size: 24px;
            font-weight: bold;
            margin-top: 10px;
            margin-bottom: 20px;
        }
        h2 {
            font-size: 18px;
            font-weight: bold;
            margin-top: 10px;
            margin-bottom: 5px;
        }
        ul {
            padding-left: 20px;
        }
        li {
            margin-bottom: 10px;
        }
        .summary {
            margin-left: 20px;
            margin-bottom: 20px;
        }
    </style>
        <h1> Hacker News Top Stories</h1>
        <p>Here are the top stories from Hacker News with summaries for September 18, 2023 :</p>

    <div style="margin-bottom: 20px;">
        <table cellpadding="0" cellspacing="0" border="0">
            <tr>
                <td style="padding-right: 10px;">
                <div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://static.arxiv.org/static/browse/0.3.4/images/arxiv-logo-fb.png'); background-size: cover; background-position: center;">

Large Language Models for Compiler Optimization

https://arxiv.org/abs/2309.07062

Summary: Researchers have developed a 7B-parameter transformer model for optimizing LLVM assembly code size. The model predicts instruction counts before and after optimization and the optimized code itself. It achieves a 3.0% improvement in reducing instruction counts over the compiler and generates compilable code 91% of the time, perfectly emulating the compiler's output 70% of the time.

    <div style="margin-bottom: 20px;">
        <table cellpadding="0" cellspacing="0" border="0">
            <tr>
                <td style="padding-right: 10px;">
                <div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://repository-images.githubusercontent.com/256540434/5a159f00-9aa1-11ea-9197-fa9f4917161c'); background-size: cover; background-position: center;">

CatalaLang/catala: Programming language for law specification

https://github.com/CatalaLang/catala

Summary: Catala is a domain-specific programming language designed for deriving algorithms from legislative texts, ensuring code-law faithfulness. Developed in collaboration with law professionals, Catala's logical structure mirrors that of law, embedding default logic as a core feature. The language allows users to annotate legislative text with code, derive an implementation of socio-fiscal mechanisms, and generate lawyer-readable PDFs. The Catala compiler is available as an opam package, with additional plugin backends for Python and OCaml.

Want to read the full issue?
Powered by Buttondown, the easiest way to start and grow your newsletter.