HackerNews Digest Daily

Subscribe
Archives
October 2, 2023

Hacker News Top Stories with Summaries (October 03, 2023)

    <style>
        p {
            font-size: 16px;
            line-height: 1.6;
            margin: 0;
            padding: 10px;
        }
        h1 {
            font-size: 24px;
            font-weight: bold;
            margin-top: 10px;
            margin-bottom: 20px;
        }
        h2 {
            font-size: 18px;
            font-weight: bold;
            margin-top: 10px;
            margin-bottom: 5px;
        }
        ul {
            padding-left: 20px;
        }
        li {
            margin-bottom: 10px;
        }
        .summary {
            margin-left: 20px;
            margin-bottom: 20px;
        }
    </style>
        <h1> Hacker News Top Stories</h1>
        <p>Here are the top stories from Hacker News with summaries for October 03, 2023 :</p>

    <div style="margin-bottom: 20px;">
        <table cellpadding="0" cellspacing="0" border="0">
            <tr>
                <td style="padding-right: 10px;">
                <div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://hackernewstoemail.s3.us-east-2.amazonaws.com/hnd2'); background-size: cover; background-position: center;">

PicoCalc: A Fully-Functional Clone of VisiCalc

https://www.lexaloffle.com/bbs/?tid=41739

Summary: PicoCalc, a fully-functional clone of the 1979 classic VisiCalc, has been released for the Pico-8 platform. The high-precision spreadsheet application offers enhancements over the original, including increased integer/fractional precision and granular error reporting.

    <div style="margin-bottom: 20px;">
        <table cellpadding="0" cellspacing="0" border="0">
            <tr>
                <td style="padding-right: 10px;">
                <div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://opengraph.githubassets.com/b2549d22bd43c714e2e637c85d637f3cafb28923cf866734faca018257140e84/mit-han-lab/streaming-llm'); background-size: cover; background-position: center;">

Efficient streaming language models with attention sinks

https://github.com/mit-han-lab/streaming-llm

Summary: MIT-Han-Lab has introduced StreamingLLM, a framework that enables Large Language Models (LLMs) to handle infinite-length inputs without sacrificing efficiency or performance. It retains only the most recent tokens and attention sinks, allowing the model to generate coherent text without cache resets. Ideal for streaming applications like multi-round dialogues, StreamingLLM outperforms sliding window recomputation baselines with up to 22.2x speedup.

Want to read the full issue?
Powered by Buttondown, the easiest way to start and grow your newsletter.