Hacker News Top Stories with Summaries (November 19, 2023)
<style>
p {
font-size: 16px;
line-height: 1.6;
margin: 0;
padding: 10px;
}
h1 {
font-size: 24px;
font-weight: bold;
margin-top: 10px;
margin-bottom: 20px;
}
h2 {
font-size: 18px;
font-weight: bold;
margin-top: 10px;
margin-bottom: 5px;
}
ul {
padding-left: 20px;
}
li {
margin-bottom: 10px;
}
.summary {
margin-left: 20px;
margin-bottom: 20px;
}
</style>
<h1> Hacker News Top Stories</h1>
<p>Here are the top stories from Hacker News with summaries for November 19, 2023 :</p>
<div style="margin-bottom: 20px;">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td style="padding-right: 10px;">
<div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://hackernewstoemail.s3.us-east-2.amazonaws.com/hnd2'); background-size: cover; background-position: center;">
Lindenmayer Systems
Summary: Lindenmayer systems (LSystems) are used to create geometric structures from strings and symbols. The author rebuilt a website for LSystems using Rust and wasm-bindgen for better performance. The process involves defining an LSystem, generating a sequence, drawing a canvas based on the sequence, and coloring the canvas using a linear gradient. The article provides examples of various fractals, such as Barnsley Fern, Fractal Tree, Dragon Curve, and Koch Snowflake, generated using LSystems.
<div style="margin-bottom: 20px;">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td style="padding-right: 10px;">
<div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://static.arxiv.org/static/browse/0.3.4/images/arxiv-logo-fb.png'); background-size: cover; background-position: center;">
Comparing Humans, GPT-4, and GPT-4V on Abstraction and Reasoning Tasks
Summary: A study comparing humans, GPT-4, and GPT-4V on abstraction and reasoning tasks using the ConceptARC benchmark found that neither version of GPT-4 has developed robust abstraction abilities at humanlike levels. The research extended previous work by evaluating GPT-4 on more detailed, one-shot prompting and GPT-4V on zero- and one-shot prompts using image versions of tasks.