Hacker News Top Stories with Summaries (February 13, 2024)
<style>
p {
font-size: 16px;
line-height: 1.6;
margin: 0;
padding: 10px;
}
h1 {
font-size: 24px;
font-weight: bold;
margin-top: 10px;
margin-bottom: 20px;
}
h2 {
font-size: 18px;
font-weight: bold;
margin-top: 10px;
margin-bottom: 5px;
}
ul {
padding-left: 20px;
}
li {
margin-bottom: 10px;
}
.summary {
margin-left: 20px;
margin-bottom: 20px;
}
</style>
<h1> Hacker News Top Stories</h1>
<p>Here are the top stories from Hacker News with summaries for February 13, 2024 :</p>
<div style="margin-bottom: 20px;">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td style="padding-right: 10px;">
<div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://media.cnn.com/api/v1/images/stellar/prod/240212162205-04-stefan-irvine-abandoned-village-hong-kong.jpg?c=16x9&q=w_800,c_fill'); background-size: cover; background-position: center;">
Abandoned villages of Hong Kong
Summary: Photographer Stefan Irvine's book, "Abandoned Villages of Hong Kong," captures the city's deserted rural areas reclaimed by nature. Irvine explores the history and heritage of these villages, some of which are being revitalized for tourism. The book serves as a reminder of Hong Kong's biodiverse environment and the impermanence of human-built structures.
<div style="margin-bottom: 20px;">
<table cellpadding="0" cellspacing="0" border="0">
<tr>
<td style="padding-right: 10px;">
<div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://upload.wikimedia.org/wikipedia/commons/thumb/1/16/Mamikons_Theorem.svg/1200px-Mamikons_Theorem.svg.png'); background-size: cover; background-position: center;">
Visual calculus
Summary: Visual calculus, invented by Mamikon Mnatsakanian, is an approach to solving integral calculus problems. It simplifies difficult problems with minimal calculation, often resembling "aha! solutions" or proofs without words. Mamikon's theorem states that the area of a tangent sweep is equal to the area of its tangent cluster, regardless of the original curve's shape. This method has been applied to various geometry problems, such as finding the area of a cycloid.