HackerNews Digest Daily

Subscribe
Archives
August 15, 2023

Hacker News Top Stories with Summaries (August 16, 2023)

    <style>
        p {
            font-size: 16px;
            line-height: 1.6;
            margin: 0;
            padding: 10px;
        }
        h1 {
            font-size: 24px;
            font-weight: bold;
            margin-top: 10px;
            margin-bottom: 20px;
        }
        h2 {
            font-size: 18px;
            font-weight: bold;
            margin-top: 10px;
            margin-bottom: 5px;
        }
        ul {
            padding-left: 20px;
        }
        li {
            margin-bottom: 10px;
        }
        .summary {
            margin-left: 20px;
            margin-bottom: 20px;
        }
    </style>
        <h1> Hacker News Top Stories</h1>
        <p>Here are the top stories from Hacker News with summaries for August 16, 2023 :</p>

    <div style="margin-bottom: 20px;">
        <table cellpadding="0" cellspacing="0" border="0">
            <tr>
                <td style="padding-right: 10px;">
                <div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://hackernewstoemail.s3.us-east-2.amazonaws.com/hnd2'); background-size: cover; background-position: center;">

How Is LLaMa.cpp Possible?

https://finbarr.ca/how-is-llama-cpp-possible/

Summary: LLaMa.cpp is a project that rewrote the LLaMa inference code in raw C++, enabling it to run locally on various hardware. With optimizations and quantizing the weights, it can run a 7B parameter model at 1 token/s on a Pixel5, ~16 tokens/s on an M2 Macbook Pro, and 0.1 tokens/s on a 4GB RAM Raspberry Pi. Memory bandwidth is the limiting factor for sampling from transformers, and reducing memory requirements through quantization makes them easier to serve.

    <div style="margin-bottom: 20px;">
        <table cellpadding="0" cellspacing="0" border="0">
            <tr>
                <td style="padding-right: 10px;">
                <div style="width: 200px; height: 100px; border-radius: 10px; overflow: hidden; background-image: url('https://opengraph.githubassets.com/6eb812b5f71174a60500da071cb7ee0ead7f3d3c25ad0a64c67d4119980a67fb/varunshenoy/opendream'); background-size: cover; background-position: center;">

Opendream: A layer-based UI for Stable Diffusion

https://github.com/varunshenoy/opendream

Summary: Opendream is an extensible, easy-to-use, and portable diffusion web UI that brings features like layering, non-destructive editing, portability, and easy-to-write extensions to Stable Diffusion workflows. It allows users to save and share workflows, supports non-destructive editing, and provides a simple way to write and install extensions. The project is open-source and licensed under the MIT License.

Want to read the full issue?
Powered by Buttondown, the easiest way to start and grow your newsletter.