"Over the last few years, Regev has been slowly laying the foundations for compiling a Human Cell Atlas—a complete portrait of our cells in all their staggering diversity. It would list every subtype, how they change over time, where they are found, and which genes they switch on. Much like the first fully-sequenced human genome, it would be a resource so fundamental that biologists will use it many times a day without even thinking about it—a comprehensive, searchable Google Maps for the human body." (Image: NIH/Zak Bickel)
If you pick a random species of insect and look inside its cells, there’s a 40 percent chance that you’ll find bacteria called Wolbachia. And if you look at Wolbachia carefully, you’ll almost certainly find a virus called WO, lying in wait within its DNA. And if you look at WO carefully, as Seth and Sarah Bordenstein, from Vanderbilt University, have done, you’ll find parts of genes that look like they come from animals—including a toxin gene that makes the bite of the black widow spider so deadly. How on earth did this nested set-up evolve? How did a spider gene end up in a virus that lives inside bacteria that live inside the cells of insects? (Image: Reuters)
"Cells contain enzymes that read the instructions encoded within DNA and use them to build biological molecules. Recently, Pardee discovered that those enzymes work even if they are removed from their native cell and freeze-dried. In that state, they’re both stable and portable; they can be kept and moved at room temperature. Add water, and the enzymes whirr into life. Offer them the right DNA instructions, and they’ll start churning out the molecules you want—vaccines, antibiotics, and more. Manufacturing medicine isn’t the only use for this technology. By freeze-drying the innards of cells onto small paper discs, Pardee also created a cheap way of detecting important diseases, like Zika and Ebola, without relying on laboratories or sequencing machines. Add a drop of saliva or blood to the paper discs, and they’ll change color if the viruses are present." (Image: Wyss Institute)
More good reads