Daily MT Picks

Subscribe
Archives
October 4, 2025

Machine Translation Digest for Sep 29 2025

Here is today's selection of cs.CL papers focusing on advancements in multimodal large language models and alternative evaluation methods. Two surveys explore the integration of multimodal emotion recognition and alternatives to next-token prediction in text generation, while other studies highlight innovative approaches in MRI quality assessment and scientific QA.


MMRQA: Signal-Enhanced Multimodal Large Language Models for MRI Quality Assessment

Magnetic resonance imaging (MRI) quality assessment is crucial for clinical decision-making, yet remains challenging due to data scarcity and protocol variability. Traditional approaches face fundamental trade-offs: signal-based methods like MRIQC provide quantitative metrics but lack semantic understanding, while deep learning approaches achieve high accuracy but sacrifice interpretability. To address these limitations, we introduce the Multimodal MRI Quality Assessment (MMRQA) framework, pioneering the integration of multimodal large language models (MLLMs) with acquisition-aware signal processing. MMRQA combines three key innovations: robust metric extraction via MRQy augmented with simulated artifacts, structured transformation of metrics into question-answer pairs using Qwen, and parameter-efficient fusion through Low-Rank Adaptation (LoRA) of LLaVA-OneVision. Evaluated on MR-ART, FastMRI, and MyConnectome benchmarks, MMRQA achieves state-of-the-art performance with strong zero-shot generalization, as validated by comprehensive ablation studies. By bridging quantitative analysis with semantic reasoning, our framework generates clinically interpretable outputs that enhance quality control in dynamic medical settings.


Multimodal Large Language Models Meet Multimodal Emotion Recognition and Reasoning: A Survey

In recent years, large language models (LLMs) have driven major advances in language understanding, marking a significant step toward artificial general intelligence (AGI). With increasing demands for higher-level semantics and cross-modal fusion, multimodal large language models (MLLMs) have emerged, integrating diverse information sources (e.g., text, vision, and audio) to enhance modeling and reasoning in complex scenarios. In AI for Science, multimodal emotion recognition and reasoning has become a rapidly growing frontier. While LLMs and MLLMs have achieved notable progress in this area, the field still lacks a systematic review that consolidates recent developments. To address this gap, this paper provides a comprehensive survey of LLMs and MLLMs for emotion recognition and reasoning, covering model architectures, datasets, and performance benchmarks. We further highlight key challenges and outline future research directions, aiming to offer researchers both an authoritative reference and practical insights for advancing this domain. To the best of our knowledge, this paper is the first attempt to comprehensively survey the intersection of MLLMs with multimodal emotion recognition and reasoning. The summary of existing methods mentioned is in our Github: \href{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}{https://github.com/yuntaoshou/Awesome-Emotion-Reasoning}.


Don't Sweat the Small Stuff: Segment-Level Meta-Evaluation Based on Pairwise Difference Correlation

This paper introduces Pairwise Difference Pearson (PDP), a novel segment-level meta-evaluation metric for Machine Translation (MT) that address limitations in previous Pearson's $\rho$-based and and Kendall's $\tau$-based meta-evaluation approaches. PDP is a correlation-based metric that utilizes pairwise differences rather than raw scores. It draws on information from all segments for a more robust understanding of score distributions and uses segment-wise pairwise differences to refine Global Pearson to intra-segment score comparisons. Analysis on the WMT'24 shared task shows PDP properly ranks sentinel evaluation metrics and better aligns with human error weightings than previous work. Noise injection analysis demonstrates PDP's robustness to random noise, segment bias, and system bias while highlighting its sensitivity to extreme outliers.


Alternatives To Next Token Prediction In Text Generation -- A Survey

The paradigm of Next Token Prediction (NTP) has driven the unprecedented success of Large Language Models (LLMs), but is also the source of their most persistent weaknesses such as poor long-term planning, error accumulation, and computational inefficiency. Acknowledging the growing interest in exploring alternatives to NTP, the survey describes the emerging ecosystem of alternatives to NTP. We categorise these approaches into five main families: (1) Multi-Token Prediction, which targets a block of future tokens instead of a single one; (2) Plan-then-Generate, where a global, high-level plan is created upfront to guide token-level decoding; (3) Latent Reasoning, which shifts the autoregressive process itself into a continuous latent space; (4) Continuous Generation Approaches, which replace sequential generation with iterative, parallel refinement through diffusion, flow matching, or energy-based methods; and (5) Non-Transformer Architectures, which sidestep NTP through their inherent model structure. By synthesizing insights across these methods, this survey offers a taxonomy to guide research into models that address the known limitations of token-level generation to develop new transformative models for natural language processing.


Q-Mirror: Unlocking the Multi-Modal Potential of Scientific Text-Only QA Pairs

High-quality, multi-modal benchmarks are crucial for advancing scientific reasoning in large models yet their manual creation is costly and unscalable. To address this bottleneck, we explore the potential for transforming Text-Only QA Pairs (TQAs) into high-quality Multi-Modal QA Pairs (MMQAs), which include three parts: 1) Task Definition \& Evaluation Rubric: We develop a TQA-to-MMQA framework and establish a comprehensive, multi-dimensional MMQA quality rubric that provides principles for the transformation. 2) Benchmark Construction: Then we construct two extensive benchmarks to rigorously evaluate state-of-the-art generation \& understanding models on the distinct tasks of MMQA generation \& MMQA quality evaluation. 3) Preliminary Solution: We develop an agentic system (Q-Mirror), which operationalizes our framework by integrating MMQA generation and evaluation into a closed loop for iterative refinement. Our experiments show that while state-of-the-art models can generate MMQAs, their outputs still leave substantial gaps, underscoring the need for reliable evaluation. We further demonstrate that top-tier understanding models align closely with human judgment in MMQA quality assessment. Leveraging both insights, the Q-Mirror agent raises average scores from 78.90 to 85.22 and pass rates from 72\% to 95\%, offering a practical path to large-scale scientific benchmarks.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.