Daily MT Picks

Subscribe
Archives
September 29, 2025

Machine Translation Digest for Sep 24 2025

Here is today's selection of cs.CL papers, focusing on advancements in machine translation. The highlighted works explore innovations in multilingual models, particularly for low-resource languages such as English-Tigrinya and Indian language pairs, and introduce novel datasets and optimization techniques for improved error handling and domain knowledge integration.


Low-Resource English-Tigrinya MT: Leveraging Multilingual Models, Custom Tokenizers, and Clean Evaluation Benchmarks

Despite advances in Neural Machine Translation (NMT), low-resource languages like Tigrinya remain underserved due to persistent challenges, including limited corpora, inadequate tokenization strategies, and the lack of standardized evaluation benchmarks. This paper investigates transfer learning techniques using multilingual pretrained models to enhance translation quality for morphologically rich, low-resource languages. We propose a refined approach that integrates language-specific tokenization, informed embedding initialization, and domain-adaptive fine-tuning. To enable rigorous assessment, we construct a high-quality, human-aligned English-Tigrinya evaluation dataset covering diverse domains. Experimental results demonstrate that transfer learning with a custom tokenizer substantially outperforms zero-shot baselines, with gains validated by BLEU, chrF, and qualitative human evaluation. Bonferroni correction is applied to ensure statistical significance across configurations. Error analysis reveals key limitations and informs targeted refinements. This study underscores the importance of linguistically aware modeling and reproducible benchmarks in bridging the performance gap for underrepresented languages. Resources are available at https://github.com/hailaykidu/MachineT_TigEng and https://huggingface.co/Hailay/MachineT_TigEng


CorIL: Towards Enriching Indian Language to Indian Language Parallel Corpora and Machine Translation Systems

India's linguistic landscape is one of the most diverse in the world, comprising over 120 major languages and approximately 1,600 additional languages, with 22 officially recognized as scheduled languages in the Indian Constitution. Despite recent progress in multilingual neural machine translation (NMT), high-quality parallel corpora for Indian languages remain scarce, especially across varied domains. In this paper, we introduce a large-scale, high-quality annotated parallel corpus covering 11 of these languages : English, Telugu, Hindi, Punjabi, Odia, Kashmiri, Sindhi, Dogri, Kannada, Urdu, and Gujarati comprising a total of 772,000 bi-text sentence pairs. The dataset is carefully curated and systematically categorized into three key domains: Government, Health, and General, to enable domain-aware machine translation research and facilitate effective domain adaptation. To demonstrate the utility of CorIL and establish strong benchmarks for future research, we fine-tune and evaluate several state-of-the-art NMT models, including IndicTrans2, NLLB, and BhashaVerse. Our analysis reveals important performance trends and highlights the corpus's value in probing model capabilities. For instance, the results show distinct performance patterns based on language script, with massively multilingual models showing an advantage on Perso-Arabic scripts (Urdu, Sindhi) while other models excel on Indic scripts. This paper provides a detailed domain-wise performance analysis, offering insights into domain sensitivity and cross-script transfer learning. By publicly releasing CorIL, we aim to significantly improve the availability of high-quality training data for Indian languages and provide a valuable resource for the machine translation research community.


EnAnchored-X2X: English-Anchored Optimization for Many-to-Many Translation

Large language models (LLMs) have demonstrated strong machine translation capabilities for English-centric language pairs but underperform in direct non-English (x2x) translation. This work addresses this limitation through a synthetic data generation framework that leverages models' established English-to-x (en2x) capabilities. By extending English parallel corpora into omnidirectional datasets and developing an English-referenced quality evaluation proxy, we enable effective collection of high-quality x2x training data. Combined with preference-based optimization, our method achieves significant improvement across 72 x2x directions for widely used LLMs, while generalizing to enhance en2x performance. The results demonstrate that strategic exploitation of English-centric strengths can bootstrap comprehensive multilingual translation capabilities in LLMs. We release codes, datasets, and model checkpoints at https://github.com/NJUNLP/EAX


SiniticMTError: A Machine Translation Dataset with Error Annotations for Sinitic Languages

Despite major advances in machine translation (MT) in recent years, progress remains limited for many low-resource languages that lack large-scale training data and linguistic resources. Cantonese and Wu Chinese are two Sinitic examples, although each enjoys more than 80 million speakers around the world. In this paper, we introduce SiniticMTError, a novel dataset that builds on existing parallel corpora to provide error span, error type, and error severity annotations in machine-translated examples from English to Mandarin, Cantonese, and Wu Chinese. Our dataset serves as a resource for the MT community to utilize in fine-tuning models with error detection capabilities, supporting research on translation quality estimation, error-aware generation, and low-resource language evaluation. We report our rigorous annotation process by native speakers, with analyses on inter-annotator agreement, iterative feedback, and patterns in error type and severity.


Embedding Domain Knowledge for Large Language Models via Reinforcement Learning from Augmented Generation

Large language models (LLMs) often exhibit limited performance on domain-specific tasks due to the natural disproportionate representation of specialized information in their training data and the static nature of these datasets. Knowledge scarcity and temporal lag create knowledge gaps for domain applications. While post-training on domain datasets can embed knowledge into models, existing approaches have some limitations. Continual Pre-Training (CPT) treats all tokens in domain documents with equal importance, failing to prioritize critical knowledge points, while supervised fine-tuning (SFT) with question-answer pairs struggles to develop the coherent knowledge structures necessary for complex reasoning tasks. To address these challenges, we propose Reinforcement Learning from Augmented Generation (RLAG). Our approach iteratively cycles between sampling generations and optimizing the model through calculated rewards, effectively embedding critical and contextually coherent domain knowledge. We select generated outputs with the highest log probabilities as the sampling result, then compute three tailored reward metrics to guide the optimization process. To comprehensively evaluate domain expertise, we assess answer accuracy and the rationality of explanations generated for correctly answered questions. Experimental results across medical, legal, astronomy, and current events datasets demonstrate that our proposed method significantly outperforms baseline approaches. Our code and data are open sourced at https://github.com/ChaojunNie/RLAG.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.