Machine Translation Digest for Sep 20 2025
Here is today's selection of cs.CL papers exploring innovative intersections in machine translation and language models. The featured works highlight advancements in integrating reinforcement learning, chemical intelligence, and paralinguistic reasoning with large language models, showcasing novel approaches to enhancing language processing capabilities.
Reinforcement Learning Meets Large Language Models: A Survey of Advancements and Applications Across the LLM Lifecycle
In recent years, training methods centered on Reinforcement Learning (RL) have markedly enhanced the reasoning and alignment performance of Large Language Models (LLMs), particularly in understanding human intents, following user instructions, and bolstering inferential strength. Although existing surveys offer overviews of RL augmented LLMs, their scope is often limited, failing to provide a comprehensive summary of how RL operates across the full lifecycle of LLMs. We systematically review the theoretical and practical advancements whereby RL empowers LLMs, especially Reinforcement Learning with Verifiable Rewards (RLVR). First, we briefly introduce the basic theory of RL. Second, we thoroughly detail application strategies for RL across various phases of the LLM lifecycle, including pre-training, alignment fine-tuning, and reinforced reasoning. In particular, we emphasize that RL methods in the reinforced reasoning phase serve as a pivotal driving force for advancing model reasoning to its limits. Next, we collate existing datasets and evaluation benchmarks currently used for RL fine-tuning, spanning human-annotated datasets, AI-assisted preference data, and program-verification-style corpora. Subsequently, we review the mainstream open-source tools and training frameworks available, providing clear practical references for subsequent research. Finally, we analyse the future challenges and trends in the field of RL-enhanced LLMs. This survey aims to present researchers and practitioners with the latest developments and frontier trends at the intersection of RL and LLMs, with the goal of fostering the evolution of LLMs that are more intelligent, generalizable, and secure.
ChemOrch: Empowering LLMs with Chemical Intelligence via Synthetic Instructions
Empowering large language models (LLMs) with chemical intelligence remains a challenge due to the scarcity of high-quality, domain-specific instruction-response datasets and the misalignment of existing synthetic data generation pipelines with the inherently hierarchical and rule-governed structure of chemical information. To address this, we propose ChemOrch, a framework that synthesizes chemically grounded instruction-response pairs through a two-stage process: task-controlled instruction generation and tool-aware response construction. ChemOrch enables controllable diversity and levels of difficulty for the generated tasks, and ensures response precision through tool planning and distillation, and tool-based self-repair mechanisms. The effectiveness of ChemOrch is evaluated based on: 1) the high quality of generated instruction data, demonstrating superior diversity and strong alignment with chemical constraints; 2) the reliable generation of evaluation tasks that more effectively reveal LLM weaknesses in chemistry; and 3) the significant improvement of LLM chemistry capabilities when the generated instruction data are used for fine-tuning. Our work thus represents a critical step toward scalable and verifiable chemical intelligence in LLMs.
Angular Dispersion Accelerates $k$-Nearest Neighbors Machine Translation
Augmenting neural machine translation with external memory at decoding time, in the form of k-nearest neighbors machine translation ($k$-NN MT), is a well-established strategy for increasing translation performance. $k$-NN MT retrieves a set of tokens that occurred in the most similar contexts recorded in a prepared data store, using hidden state representations of translation contexts as vector lookup keys. One of the main disadvantages of this method is the high computational cost and memory requirements. Since an exhaustive search is not feasible in large data stores, practitioners commonly use approximate $k$-NN MT lookup, yet even such algorithms are a bottleneck. In contrast to research directions seeking to accelerate $k$-NN MT by reducing data store size or the number of lookup calls, we pursue an orthogonal direction based on the performance properties of approximate $k$-NN MT lookup data structures. In particular, we propose to encourage angular dispersion of the neural hidden representations of contexts. We show that improving dispersion leads to better balance in the retrieval data structures, accelerating retrieval and slightly improving translations.
Benchmarking Contextual and Paralinguistic Reasoning in Speech-LLMs: A Case Study with In-the-Wild Data
Recent speech-LLMs have shown impressive performance in tasks like transcription and translation, yet they remain limited in understanding the paralinguistic aspects of speech crucial for social and emotional intelligence. We propose CP-Bench, a benchmark for evaluating speech-LLMs on contextual paralinguistic reasoning the integration of verbal content with non-verbal cues like emotion and prosody. The benchmark includes two curated question answering (QA) datasets requiring both linguistic and empathetic understanding. We evaluate state-of-the-art speech-LLMs from both open and closed-source models and perform a comprehensive analysis across different question types. The top two models were further analyzed under temperature tuning to understand its effect on this task. Our benchmark reveals a key gap in existing evaluations and offers insights into building more context-aware and emotionally intelligent speech-capable LLMs.
Time to Revist Exact Match
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only $\pm1$ from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.
Curated by yukajii.com |