Daily MT Picks

Subscribe
Archives
September 24, 2025

Machine Translation Digest for Sep 19 2025

Here is today's selection of cs.CL papers featuring advancements in multilingual machine translation and dataset development. The papers explore diverse strategies, including instruction fine-tuning, prompting for medical translations, and unified frameworks for both speech and text, highlighting the ongoing innovation in enhancing translation quality across multiple languages.


A method for improving multilingual quality and diversity of instruction fine-tuning datasets

Multilingual Instruction Fine-Tuning (IFT) is essential for enabling large language models (LLMs) to generalize effectively across diverse linguistic and cultural contexts. However, the scarcity of high-quality multilingual training data and corresponding building method remains a critical bottleneck. While data selection has shown promise in English settings, existing methods often fail to generalize across languages due to reliance on simplistic heuristics or language-specific assumptions. In this work, we introduce Multilingual Data Quality and Diversity (M-DaQ), a novel method for improving LLMs multilinguality, by selecting high-quality and semantically diverse multilingual IFT samples. We further conduct the first systematic investigation of the Superficial Alignment Hypothesis (SAH) in multilingual setting. Empirical results across 18 languages demonstrate that models fine-tuned with M-DaQ method achieve significant performance gains over vanilla baselines over 60% win rate. Human evaluations further validate these gains, highlighting the increment of cultural points in the response. We release the M-DaQ code to support future research.


Multilingual LLM Prompting Strategies for Medical English-Vietnamese Machine Translation

Medical English-Vietnamese machine translation (En-Vi MT) is essential for healthcare access and communication in Vietnam, yet Vietnamese remains a low-resource and under-studied language. We systematically evaluate prompting strategies for six multilingual LLMs (0.5B-9B parameters) on the MedEV dataset, comparing zero-shot, few-shot, and dictionary-augmented prompting with Meddict, an English-Vietnamese medical lexicon. Results show that model scale is the primary driver of performance: larger LLMs achieve strong zero-shot results, while few-shot prompting yields only marginal improvements. In contrast, terminology-aware cues and embedding-based example retrieval consistently improve domain-specific translation. These findings underscore both the promise and the current limitations of multilingual LLMs for medical En-Vi MT.


UPRPRC: Unified Pipeline for Reproducing Parallel Resources -- Corpus from the United Nations

The quality and accessibility of multilingual datasets are crucial for advancing machine translation. However, previous corpora built from United Nations documents have suffered from issues such as opaque process, difficulty of reproduction, and limited scale. To address these challenges, we introduce a complete end-to-end solution, from data acquisition via web scraping to text alignment. The entire process is fully reproducible, with a minimalist single-machine example and optional distributed computing steps for scalability. At its core, we propose a new Graph-Aided Paragraph Alignment (GAPA) algorithm for efficient and flexible paragraph-level alignment. The resulting corpus contains over 713 million English tokens, more than doubling the scale of prior work. To the best of our knowledge, this represents the largest publicly available parallel corpus composed entirely of human-translated, non-AI-generated content. Our code and corpus are accessible under the MIT License.


Whisper-UT: A Unified Translation Framework for Speech and Text

Encoder-decoder models have achieved remarkable success in speech and text tasks, yet efficiently adapting these models to diverse uni/multi-modal scenarios remains an open challenge. In this paper, we propose Whisper-UT, a unified and efficient framework that leverages lightweight adapters to enable seamless adaptation across tasks, including a multi-modal machine translation (MMT) task that explicitly conditions translation on both speech and source language text inputs. By incorporating ASR hypotheses or ground-truth transcripts as prompts, this approach not only enables the system to process both modalities simultaneously but also enhances speech translation (ST) performance through a 2-stage decoding strategy. We demonstrate our methods using the Whisper model, though in principle they are general and could be applied to similar multitask models. We highlight the effectiveness of cross-modal and cross-task fine-tuning, which improves performance without requiring 3-way parallel data. Our results underscore the flexibility, efficiency, and general applicability of the proposed framework for multi-modal translation.


Multi-Physics: A Comprehensive Benchmark for Multimodal LLMs Reasoning on Chinese Multi-Subject Physics Problems

While multimodal LLMs (MLLMs) demonstrate remarkable reasoning progress, their application in specialized scientific domains like physics reveals significant gaps in current evaluation benchmarks. Specifically, existing benchmarks often lack fine-grained subject coverage, neglect the step-by-step reasoning process, and are predominantly English-centric, failing to systematically evaluate the role of visual information. Therefore, we introduce \textbf {Multi-Physics} for Chinese physics reasoning, a comprehensive benchmark that includes 5 difficulty levels, featuring 1,412 image-associated, multiple-choice questions spanning 11 high-school physics subjects. We employ a dual evaluation framework to evaluate 20 different MLLMs, analyzing both final answer accuracy and the step-by-step integrity of their chain-of-thought. Furthermore, we systematically study the impact of difficulty level and visual information by comparing the model performance before and after changing the input mode. Our work provides not only a fine-grained resource for the community but also offers a robust methodology for dissecting the multimodal reasoning process of state-of-the-art MLLMs, and our dataset and code have been open-sourced: https://github.com/luozhongze/Multi-Physics.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.