Daily MT Picks

Subscribe
Archives
September 18, 2025

Machine Translation Digest for Sep 13 2025

Here is today's selection of cs.CL papers. The common theme revolves around enhancing interpretability and synthesis in AI models, with a focus on cultural nuances and information retrieval. Additionally, the papers explore innovative methods for improving document summarization and addressing security challenges in large language models.


An Interpretable Benchmark for Clickbait Detection and Tactic Attribution

The proliferation of clickbait headlines poses significant challenges to the credibility of information and user trust in digital media. While recent advances in machine learning have improved the detection of manipulative content, the lack of explainability limits their practical adoption. This paper presents a model for explainable clickbait detection that not only identifies clickbait titles but also attributes them to specific linguistic manipulation strategies. We introduce a synthetic dataset generated by systematically augmenting real news headlines using a predefined catalogue of clickbait strategies. This dataset enables controlled experimentation and detailed analysis of model behaviour. We present a two-stage framework for automatic clickbait analysis comprising detection and tactic attribution. In the first stage, we compare a fine-tuned BERT classifier with large language models (LLMs), specifically GPT-4.0 and Gemini 2.4 Flash, under both zero-shot prompting and few-shot prompting enriched with illustrative clickbait headlines and their associated persuasive tactics. In the second stage, a dedicated BERT-based classifier predicts the specific clickbait strategies present in each headline. This work advances the development of transparent and trustworthy AI systems for combating manipulative media content. We share the dataset with the research community at https://github.com/LLM-HITCS25S/ClickbaitTacticsDetection


CultureSynth: A Hierarchical Taxonomy-Guided and Retrieval-Augmented Framework for Cultural Question-Answer Synthesis

Cultural competence, defined as the ability to understand and adapt to multicultural contexts, is increasingly vital for large language models (LLMs) in global environments. While several cultural benchmarks exist to assess LLMs' cultural competence, current evaluations suffer from fragmented taxonomies, domain specificity, and heavy reliance on manual data annotation. To address these limitations, we introduce CultureSynth, a novel framework comprising (1) a comprehensive hierarchical multilingual cultural taxonomy covering 12 primary and 130 secondary topics, and (2) a Retrieval-Augmented Generation (RAG)-based methodology leveraging factual knowledge to synthesize culturally relevant question-answer pairs. The CultureSynth-7 synthetic benchmark contains 19,360 entries and 4,149 manually verified entries across 7 languages. Evaluation of 14 prevalent LLMs of different sizes reveals clear performance stratification led by ChatGPT-4o-Latest and Qwen2.5-72B-Instruct. The results demonstrate that a 3B-parameter threshold is necessary for achieving basic cultural competence, models display varying architectural biases in knowledge processing, and significant geographic disparities exist across models. We believe that CultureSynth offers a scalable framework for developing culturally aware AI systems while reducing reliance on manual annotation\footnote{Benchmark is available at https://github.com/Eyr3/CultureSynth.}.


ReFineG: Synergizing Small Supervised Models and LLMs for Low-Resource Grounded Multimodal NER

Grounded Multimodal Named Entity Recognition (GMNER) extends traditional NER by jointly detecting textual mentions and grounding them to visual regions. While existing supervised methods achieve strong performance, they rely on costly multimodal annotations and often underperform in low-resource domains. Multimodal Large Language Models (MLLMs) show strong generalization but suffer from Domain Knowledge Conflict, producing redundant or incorrect mentions for domain-specific entities. To address these challenges, we propose ReFineG, a three-stage collaborative framework that integrates small supervised models with frozen MLLMs for low-resource GMNER. In the Training Stage, a domain-aware NER data synthesis strategy transfers LLM knowledge to small models with supervised training while avoiding domain knowledge conflicts. In the Refinement Stage, an uncertainty-based mechanism retains confident predictions from supervised models and delegates uncertain ones to the MLLM. In the Grounding Stage, a multimodal context selection algorithm enhances visual grounding through analogical reasoning. In the CCKS2025 GMNER Shared Task, ReFineG ranked second with an F1 score of 0.6461 on the online leaderboard, demonstrating its effectiveness with limited annotations.


Introducing Spotlight: A Novel Approach for Generating Captivating Key Information from Documents

In this paper, we introduce Spotlight, a novel paradigm for information extraction that produces concise, engaging narratives by highlighting the most compelling aspects of a document. Unlike traditional summaries, which prioritize comprehensive coverage, spotlights selectively emphasize intriguing content to foster deeper reader engagement with the source material. We formally differentiate spotlights from related constructs and support our analysis with a detailed benchmarking study using new datasets curated for this work. To generate high-quality spotlights, we propose a two-stage approach: fine-tuning a large language model on our benchmark data, followed by alignment via Direct Preference Optimization (DPO). Our comprehensive evaluation demonstrates that the resulting model not only identifies key elements with precision but also enhances readability and boosts the engagement value of the original document.


Harmful Prompt Laundering: Jailbreaking LLMs with Abductive Styles and Symbolic Encoding

Large Language Models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but their potential misuse for harmful purposes remains a significant concern. To strengthen defenses against such vulnerabilities, it is essential to investigate universal jailbreak attacks that exploit intrinsic weaknesses in the architecture and learning paradigms of LLMs. In response, we propose \textbf{H}armful \textbf{P}rompt \textbf{La}undering (HaPLa), a novel and broadly applicable jailbreaking technique that requires only black-box access to target models. HaPLa incorporates two primary strategies: 1) \textit{abductive framing}, which instructs LLMs to infer plausible intermediate steps toward harmful activities, rather than directly responding to explicit harmful queries; and 2) \textit{symbolic encoding}, a lightweight and flexible approach designed to obfuscate harmful content, given that current LLMs remain sensitive primarily to explicit harmful keywords. Experimental results show that HaPLa achieves over 95% attack success rate on GPT-series models and 70% across all targets. Further analysis with diverse symbolic encoding rules also reveals a fundamental challenge: it remains difficult to safely tune LLMs without significantly diminishing their helpfulness in responding to benign queries.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.