Machine Translation Digest for Sep 09 2025
Here is today's selection of cs.CL papers. The common theme revolves around enhancing machine translation and language model capabilities, particularly in resource-constrained settings. The papers explore data augmentation, cost-effective model scaling, and the evaluation of factuality and content safety in language models.
From Scarcity to Efficiency: Investigating the Effects of Data Augmentation on African Machine Translation
The linguistic diversity across the African continent presents different challenges and opportunities for machine translation. This study explores the effects of data augmentation techniques in improving translation systems in low-resource African languages. We focus on two data augmentation techniques: sentence concatenation with back translation and switch-out, applying them across six African languages. Our experiments show significant improvements in machine translation performance, with a minimum increase of 25\% in BLEU score across all six languages.We provide a comprehensive analysis and highlight the potential of these techniques to improve machine translation systems for low-resource languages, contributing to the development of more robust translation systems for under-resourced languages.
SimpleQA Verified: A Reliable Factuality Benchmark to Measure Parametric Knowledge
We introduce SimpleQA Verified, a 1,000-prompt benchmark for evaluating Large Language Model (LLM) short-form factuality based on OpenAI's SimpleQA. It addresses critical limitations in OpenAI's benchmark, including noisy and incorrect labels, topical biases, and question redundancy. SimpleQA Verified was created through a rigorous multi-stage filtering process involving de-duplication, topic balancing, and source reconciliation to produce a more reliable and challenging evaluation set, alongside improvements in the autorater prompt. On this new benchmark, Gemini 2.5 Pro achieves a state-of-the-art F1-score of 55.6, outperforming other frontier models, including GPT-5. This work provides the research community with a higher-fidelity tool to track genuine progress in parametric model factuality and to mitigate hallucinations. The benchmark dataset, evaluation code, and leaderboard are available at: https://www.kaggle.com/benchmarks/deepmind/simpleqa-verified.
SciGPT: A Large Language Model for Scientific Literature Understanding and Knowledge Discovery
Scientific literature is growing exponentially, creating a critical bottleneck for researchers to efficiently synthesize knowledge. While general-purpose Large Language Models (LLMs) show potential in text processing, they often fail to capture scientific domain-specific nuances (e.g., technical jargon, methodological rigor) and struggle with complex scientific tasks, limiting their utility for interdisciplinary research. To address these gaps, this paper presents SciGPT, a domain-adapted foundation model for scientific literature understanding and ScienceBench, an open source benchmark tailored to evaluate scientific LLMs. Built on the Qwen3 architecture, SciGPT incorporates three key innovations: (1) low-cost domain distillation via a two-stage pipeline to balance performance and efficiency; (2) a Sparse Mixture-of-Experts (SMoE) attention mechanism that cuts memory consumption by 55\% for 32,000-token long-document reasoning; and (3) knowledge-aware adaptation integrating domain ontologies to bridge interdisciplinary knowledge gaps. Experimental results on ScienceBench show that SciGPT outperforms GPT-4o in core scientific tasks including sequence labeling, generation, and inference. It also exhibits strong robustness in unseen scientific tasks, validating its potential to facilitate AI-augmented scientific discovery.
Small Open Models Achieve Near Parity with Large Models in Low Resource Literary Translation at a Fraction of the Cost
Literary translation has recently gained attention as a distinct and complex task in machine translation research. However, the translation by small open models remains an open problem. We contribute to this ongoing research by introducing TINYFABULIST TRANSLATION FRAMEWORK (TF2), a unified framework for dataset creation, fine tuning, and evaluation in English-Romanian literary translations, centred on the creation and open release of both a compact, fine tuned language model (TF2-12B) and large scale synthetic parallel datasets (DS-TF2-EN-RO-3M and DS-TF2-EN-RO-15K). Building on DS-TF1-EN-3M (TF1), the largest collection of synthetic English fables to date, we address the need for rich, high quality literary datasets in low resource languages such as Romanian. Our pipeline first generates 15k high quality Romanian references from the TF1 pool using a high performing LLM. We then apply a two stage fine tuning process to a 12B parameter open weight model: (i) instruction tuning to capture genre specific narrative style, and (ii) adapter compression for efficient deployment. Evaluation combines corpus level BLEU and a five dimension LLM based rubric (accuracy, fluency, coherence, style, cultural adaptation) to provide a nuanced assessment of translation quality. Results show that our fine tuned model achieves fluency and adequacy competitive with top performing large proprietary models, while being open, accessible, and significantly more cost effective. Alongside the fine tuned model and both datasets, we publicly release all scripts and evaluation prompts. TF2 thus provides an end-to-end, reproducible pipeline for research on cost efficient translation, cross lingual narrative generation, and the broad adoption of open models for culturally significant literary content in low resource settings.
Are LLMs Enough for Hyperpartisan, Fake, Polarized and Harmful Content Detection? Evaluating In-Context Learning vs. Fine-Tuning
The spread of fake news, polarizing, politically biased, and harmful content on online platforms has been a serious concern. With large language models becoming a promising approach, however, no study has properly benchmarked their performance across different models, usage methods, and languages. This study presents a comprehensive overview of different Large Language Models adaptation paradigms for the detection of hyperpartisan and fake news, harmful tweets, and political bias. Our experiments spanned 10 datasets and 5 different languages (English, Spanish, Portuguese, Arabic and Bulgarian), covering both binary and multiclass classification scenarios. We tested different strategies ranging from parameter efficient Fine-Tuning of language models to a variety of different In-Context Learning strategies and prompts. These included zero-shot prompts, codebooks, few-shot (with both randomly-selected and diversely-selected examples using Determinantal Point Processes), and Chain-of-Thought. We discovered that In-Context Learning often underperforms when compared to Fine-Tuning a model. This main finding highlights the importance of Fine-Tuning even smaller models on task-specific settings even when compared to the largest models evaluated in an In-Context Learning setup - in our case LlaMA3.1-8b-Instruct, Mistral-Nemo-Instruct-2407 and Qwen2.5-7B-Instruct.
Curated by yukajii.com |