Machine Translation Digest for Sep 05 2025
Here is today's selection of cs.CL papers exploring various aspects of machine translation and multilingual systems. The papers delve into innovative approaches such as in-image multilingual translation and address challenges like systematic bias in tokenization across languages. Additionally, they examine the role of large language models in related fields like patient information extraction, highlighting the intersection of MT with broader AI applications.
Hunyuan-MT Technical Report
In this report, we introduce Hunyuan-MT-7B, our first open-source multilingual translation model, which supports bidirectional translation across 33 major languages and places a special emphasis on translation between Mandarin and several ethnic minority languages as well as dialects. Furthermore, to serve and address diverse translation scenarios and enhance model performance at test time, we introduce Hunyuan-MT-Chimera-7B, a translation model inspired by the slow thinking mode. This model integrates multiple outputs generated by the Hunyuan-MT-7B model under varying parameter settings, thereby achieving performance superior to that of conventional slow-thinking models based on Chain-of-Thought (CoT). The development of our models follows a holistic training process specifically engineered for multilingual translation, which begins with general and MT-oriented pre-training to build foundational capabilities, proceeds to Supervised Fine-Tuning (SFT) for task-specific adaptation, and culminates in advanced alignment through Reinforcement Learning (RL) and weak-to-strong RL. Through comprehensive experimentation, we demonstrate that both Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B significantly outperform all translation-specific models of comparable parameter size and most of the SOTA large models, particularly on the task of translation between Mandarin and minority languages as well as dialects. In the WMT2025 shared task (General Machine Translation), our models demonstrate state-of-the-art performance, ranking first in 30 out of 31 language pairs. This result highlights the robustness of our models across a diverse linguistic spectrum, encompassing high-resource languages such as Chinese, English, and Japanese, as well as low-resource languages including Czech, Marathi, Estonian, and Icelandic.
PRIM: Towards Practical In-Image Multilingual Machine Translation
In-Image Machine Translation (IIMT) aims to translate images containing texts from one language to another. Current research of end-to-end IIMT mainly conducts on synthetic data, with simple background, single font, fixed text position, and bilingual translation, which can not fully reflect real world, causing a significant gap between the research and practical conditions. To facilitate research of IIMT in real-world scenarios, we explore Practical In-Image Multilingual Machine Translation (IIMMT). In order to convince the lack of publicly available data, we annotate the PRIM dataset, which contains real-world captured one-line text images with complex background, various fonts, diverse text positions, and supports multilingual translation directions. We propose an end-to-end model VisTrans to handle the challenge of practical conditions in PRIM, which processes visual text and background information in the image separately, ensuring the capability of multilingual translation while improving the visual quality. Experimental results indicate the VisTrans achieves a better translation quality and visual effect compared to other models. The code and dataset are available at: https://github.com/BITHLP/PRIM.
No Translation Needed: Forecasting Quality from Fertility and Metadata
We show that translation quality can be predicted with surprising accuracy \textit{without ever running the translation system itself}. Using only a handful of features, token fertility ratios, token counts, and basic linguistic metadata (language family, script, and region), we can forecast ChrF scores for GPT-4o translations across 203 languages in the FLORES-200 benchmark. Gradient boosting models achieve favorable performance ($R^{2}=0.66$ for XX$\rightarrow$English and $R^{2}=0.72$ for English$\rightarrow$XX). Feature importance analyses reveal that typological factors dominate predictions into English, while fertility plays a larger role for translations into diverse target languages. These findings suggest that translation quality is shaped by both token-level fertility and broader linguistic typology, offering new insights for multilingual evaluation and quality estimation.
The Token Tax: Systematic Bias in Multilingual Tokenization
Tokenization inefficiency imposes structural disadvantages on morphologically complex, low-resource languages, inflating compute resources and depressing accuracy. We evaluate 10 large language models (LLMs) on AfriMMLU (9,000 MCQA items; 5 subjects; 16 African languages) and show that fertility (tokens/word) reliably predicts accuracy. Higher fertility consistently predicts lower accuracy across all models and subjects. We further find that reasoning models (DeepSeek, o1) consistently outperform non-reasoning peers across high and low resource languages in the AfriMMLU dataset, narrowing accuracy gaps observed in prior generations. Finally, translating token inflation to economics, a doubling in tokens results in quadrupled training cost and time, underscoring the token tax faced by many languages. These results motivate morphologically aware tokenization, fair pricing, and multilingual benchmarks for equitable natural language processing (NLP).
A Study of Large Language Models for Patient Information Extraction: Model Architecture, Fine-Tuning Strategy, and Multi-task Instruction Tuning
Natural language processing (NLP) is a key technology to extract important patient information from clinical narratives to support healthcare applications. The rapid development of large language models (LLMs) has revolutionized many NLP tasks in the clinical domain, yet their optimal use in patient information extraction tasks requires further exploration. This study examines LLMs' effectiveness in patient information extraction, focusing on LLM architectures, fine-tuning strategies, and multi-task instruction tuning techniques for developing robust and generalizable patient information extraction systems. This study aims to explore key concepts of using LLMs for clinical concept and relation extraction tasks, including: (1) encoder-only or decoder-only LLMs, (2) prompt-based parameter-efficient fine-tuning (PEFT) algorithms, and (3) multi-task instruction tuning on few-shot learning performance. We benchmarked a suite of LLMs, including encoder-based LLMs (BERT, GatorTron) and decoder-based LLMs (GatorTronGPT, Llama 3.1, GatorTronLlama), across five datasets. We compared traditional full-size fine-tuning and prompt-based PEFT. We explored a multi-task instruction tuning framework that combines both tasks across four datasets to evaluate the zero-shot and few-shot learning performance using the leave-one-dataset-out strategy.
Curated by yukajii.com |