Machine Translation Digest for Sep 04 2025
Here is today's selection of cs.CL papers in machine translation and natural language processing. The papers explore advancements in handling complex language tasks, including the evaluation of large language models for specific domains like biomedical NLP, and innovative frameworks for document translation and multilingual comprehension. Additionally, the research highlights efforts to improve performance in low-resource settings and enhance reasoning through structured approaches.
Quantized Large Language Models in Biomedical Natural Language Processing: Evaluation and Recommendation
Large language models have demonstrated remarkable capabilities in biomedical natural language processing, yet their rapid growth in size and computational requirements present a major barrier to adoption in healthcare settings where data privacy precludes cloud deployment and resources are limited. In this study, we systematically evaluated the impact of quantization on 12 state-of-the-art large language models, including both general-purpose and biomedical-specific models, across eight benchmark datasets covering four key tasks: named entity recognition, relation extraction, multi-label classification, and question answering. We show that quantization substantially reduces GPU memory requirements-by up to 75%-while preserving model performance across diverse tasks, enabling the deployment of 70B-parameter models on 40GB consumer-grade GPUs. In addition, domain-specific knowledge and responsiveness to advanced prompting methods are largely maintained. These findings provide significant practical and guiding value, highlighting quantization as a practical and effective strategy for enabling the secure, local deployment of large yet high-capacity language models in biomedical contexts, bridging the gap between technical advances in AI and real-world clinical translation.
Align-then-Slide: A complete evaluation framework for Ultra-Long Document-Level Machine Translation
Large language models (LLMs) have ushered in a new era for document-level machine translation (\textit{doc}-mt), yet their whole-document outputs challenge existing evaluation methods that assume sentence-by-sentence alignment. We introduce \textit{\textbf{Align-then-Slide}}, a complete evaluation framework for ultra-long doc-mt. In the Align stage, we automatically infer sentence-level source-target correspondences and rebuild the target to match the source sentence number, resolving omissions and many-to-one/one-to-many mappings. In the n-Chunk Sliding Evaluate stage, we calculate averaged metric scores under 1-, 2-, 3- and 4-chunk for multi-granularity assessment. Experiments on the WMT benchmark show a Pearson correlation of 0.929 between our method with expert MQM rankings. On a newly curated real-world test set, our method again aligns closely with human judgments. Furthermore, preference data produced by Align-then-Slide enables effective CPO training and its direct use as a reward model for GRPO, both yielding translations preferred over a vanilla SFT baseline. The results validate our framework as an accurate, robust, and actionable evaluation tool for doc-mt systems.
Exploring NLP Benchmarks in an Extremely Low-Resource Setting
The effectiveness of Large Language Models (LLMs) diminishes for extremely low-resource languages, such as indigenous languages, primarily due to the lack of labeled data. Despite growing interest, the availability of high-quality natural language processing (NLP) datasets for these languages remains limited, making it difficult to develop robust language technologies. This paper addresses such gap by focusing on Ladin, an endangered Romance language, specifically targeting the Val Badia variant. Leveraging a small set of parallel Ladin-Italian sentence pairs, we create synthetic datasets for sentiment analysis and multiple-choice question answering (MCQA) by translating monolingual Italian data. To ensure linguistic quality and reliability, we apply rigorous filtering and back-translation procedures in our method. We further demonstrate that incorporating these synthetic datasets into machine translation training leads to substantial improvements over existing Italian-Ladin translation baselines. Our contributions include the first publicly available sentiment analysis and MCQA datasets for Ladin, establishing foundational resources that can support broader NLP research and downstream applications for this underrepresented language.
MultiWikiQA: A Reading Comprehension Benchmark in 300+ Languages
We introduce a new reading comprehension dataset, dubbed MultiWikiQA, which covers 306 languages. The context data comes from Wikipedia articles, with questions generated by an LLM and the answers appearing verbatim in the Wikipedia articles. We conduct a crowdsourced human evaluation of the fluency of the generated questions across 30 of the languages, providing evidence that the questions are of good quality. We evaluate 6 different language models, both decoder and encoder models of varying sizes, showing that the benchmark is sufficiently difficult and that there is a large performance discrepancy amongst the languages. The dataset and survey evaluations are freely available.
MTQA:Matrix of Thought for Enhanced Reasoning in Complex Question Answering
Complex Question Answering (QA) is a fundamental and challenging task in NLP. While large language models (LLMs) exhibit impressive performance in QA, they suffer from significant performance degradation when facing complex and abstract QA tasks due to insufficient reasoning capabilities. Works such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT) aim to enhance LLMs' reasoning abilities, but they face issues such as in-layer redundancy in tree structures and single paths in chain structures. Although some studies utilize Retrieval-Augmented Generation (RAG) methods to assist LLMs in reasoning, the challenge of effectively utilizing large amounts of information involving multiple entities and hops remains critical. To address this, we propose the Matrix of Thought (MoT), a novel and efficient LLM thought structure. MoT explores the problem in both horizontal and vertical dimensions through the "column-cell communication" mechanism, enabling LLMs to actively engage in multi-strategy and deep-level thinking, reducing redundancy within the column cells and enhancing reasoning capabilities. Furthermore, we develop a fact-correction mechanism by constructing knowledge units from retrieved knowledge graph triples and raw text to enhance the initial knowledge for LLM reasoning and correct erroneous answers. This leads to the development of an efficient and accurate QA framework (MTQA). Experimental results show that our framework outperforms state-of-the-art methods on four widely-used datasets in terms of F1 and EM scores, with reasoning time only 14.4\% of the baseline methods, demonstrating both its efficiency and accuracy. The code for this framework is available at https://github.com/lyfiter/mtqa.
Curated by yukajii.com |