Daily MT Picks

Archives
Subscribe
November 3, 2025

Machine Translation Digest for Oct 29 2025

Here is today's selection of cs.CL papers exploring the diverse landscape of machine translation and language model evaluation. The common themes include enhancing translation systems for underrepresented languages and refining evaluation methods across various linguistic and logical domains, emphasizing the importance of data-centric approaches and domain-specific fine-tuning.


A Critical Study of Automatic Evaluation in Sign Language Translation

Automatic evaluation metrics are crucial for advancing sign language translation (SLT). Current SLT evaluation metrics, such as BLEU and ROUGE, are only text-based, and it remains unclear to what extent text-based metrics can reliably capture the quality of SLT outputs. To address this gap, we investigate the limitations of text-based SLT evaluation metrics by analyzing six metrics, including BLEU, chrF, and ROUGE, as well as BLEURT on the one hand, and large language model (LLM)-based evaluators such as G-Eval and GEMBA zero-shot direct assessment on the other hand. Specifically, we assess the consistency and robustness of these metrics under three controlled conditions: paraphrasing, hallucinations in model outputs, and variations in sentence length. Our analysis highlights the limitations of lexical overlap metrics and demonstrates that while LLM-based evaluators better capture semantic equivalence often missed by conventional metrics, they can also exhibit bias toward LLM-paraphrased translations. Moreover, although all metrics are able to detect hallucinations, BLEU tends to be overly sensitive, whereas BLEURT and LLM-based evaluators are comparatively lenient toward subtle cases. This motivates the need for multimodal evaluation frameworks that extend beyond text-based metrics to enable a more holistic assessment of SLT outputs.


A Survey on Efficient Large Language Model Training: From Data-centric Perspectives

Post-training of Large Language Models (LLMs) is crucial for unlocking their task generalization potential and domain-specific capabilities. However, the current LLM post-training paradigm faces significant data challenges, including the high costs of manual annotation and diminishing marginal returns on data scales. Therefore, achieving data-efficient post-training has become a key research question. In this paper, we present the first systematic survey of data-efficient LLM post-training from a data-centric perspective. We propose a taxonomy of data-efficient LLM post-training methods, covering data selection, data quality enhancement, synthetic data generation, data distillation and compression, and self-evolving data ecosystems. We summarize representative approaches in each category and outline future research directions. By examining the challenges in data-efficient LLM post-training, we highlight open problems and propose potential research avenues. We hope our work inspires further exploration into maximizing the potential of data utilization in large-scale model training. Paper List: https://github.com/luo-junyu/Awesome-Data-Efficient-LLM


RLMEval: Evaluating Research-Level Neural Theorem Proving

Despite impressive results on curated benchmarks, the practical impact of large language models (LLMs) on research-level neural theorem proving and proof autoformalization is still limited. We introduce RLMEval, an evaluation suite for these tasks, focusing on research-level mathematics from real-world Lean formalization projects. RLMEval targets the evaluation of neural theorem proving and proof autoformalization on challenging research-level theorems by leveraging real Lean Blueprint formalization projects. Our evaluation of state-of-the-art models on RLMEval, comprising 613 theorems from 6 Lean projects, reveals a significant gap: progress on existing benchmarks does not readily translate to these more realistic settings, with the best model achieving only a 10.3 % pass rate. RLMEval provides a new, challenging benchmark designed to guide and accelerate progress in automated reasoning for formal mathematics.


Fine-Tuned Language Models for Domain-Specific Summarization and Tagging

This paper presents a pipeline integrating fine-tuned large language models (LLMs) with named entity recognition (NER) for efficient domain-specific text summarization and tagging. The authors address the challenge posed by rapidly evolving sub-cultural languages and slang, which complicate automated information extraction and law enforcement monitoring. By leveraging the LLaMA Factory framework, the study fine-tunes LLMs on both generalpurpose and custom domain-specific datasets, particularly in the political and security domains. The models are evaluated using BLEU and ROUGE metrics, demonstrating that instruction fine-tuning significantly enhances summarization and tagging accuracy, especially for specialized corpora. Notably, the LLaMA3-8B-Instruct model, despite its initial limitations in Chinese comprehension, outperforms its Chinese-trained counterpart after domainspecific fine-tuning, suggesting that underlying reasoning capabilities can transfer across languages. The pipeline enables concise summaries and structured entity tagging, facilitating rapid document categorization and distribution. This approach proves scalable and adaptable for real-time applications, supporting efficient information management and the ongoing need to capture emerging language trends. The integration of LLMs and NER offers a robust solution for transforming unstructured text into actionable insights, crucial for modern knowledge management and security operations.


Pretraining Strategies using Monolingual and Parallel Data for Low-Resource Machine Translation

This research article examines the effectiveness of various pretraining strategies for developing machine translation models tailored to low-resource languages. Although this work considers several low-resource languages, including Afrikaans, Swahili, and Zulu, the translation model is specifically developed for Lingala, an under-resourced African language, building upon the pretraining approach introduced by Reid and Artetxe (2021), originally designed for high-resource languages. Through a series of comprehensive experiments, we explore different pretraining methodologies, including the integration of multiple languages and the use of both monolingual and parallel data during the pretraining phase. Our findings indicate that pretraining on multiple languages and leveraging both monolingual and parallel data significantly enhance translation quality. This study offers valuable insights into effective pretraining strategies for low-resource machine translation, helping to bridge the performance gap between high-resource and low-resource languages. The results contribute to the broader goal of developing more inclusive and accurate NLP models for marginalized communities and underrepresented populations. The code and datasets used in this study are publicly available to facilitate further research and ensure reproducibility, with the exception of certain data that may no longer be accessible due to changes in public availability.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.