Daily MT Picks

Archives
Subscribe
November 2, 2025

Machine Translation Digest for Oct 28 2025

Here is today's selection of cs.CL papers exploring advancements in machine translation evaluation and benchmarking. The papers discuss new techniques for collaborative evaluation, the introduction of innovative taxonomies and benchmarks to address hallucinations in multilingual models, and the development of best practices for evaluating European language models.


MQM Re-Annotation: A Technique for Collaborative Evaluation of Machine Translation

Human evaluation of machine translation is in an arms race with translation model quality: as our models get better, our evaluation methods need to be improved to ensure that quality gains are not lost in evaluation noise. To this end, we experiment with a two-stage version of the current state-of-the-art translation evaluation paradigm (MQM), which we call MQM re-annotation. In this setup, an MQM annotator reviews and edits a set of pre-existing MQM annotations, that may have come from themselves, another human annotator, or an automatic MQM annotation system. We demonstrate that rater behavior in re-annotation aligns with our goals, and that re-annotation results in higher-quality annotations, mostly due to finding errors that were missed during the first pass.


Challenging Multilingual LLMs: A New Taxonomy and Benchmark for Unraveling Hallucination in Translation

Large Language Models (LLMs) have advanced machine translation but remain vulnerable to hallucinations. Unfortunately, existing MT benchmarks are not capable of exposing failures in multilingual LLMs. To disclose hallucination in multilingual LLMs, we introduce a diagnostic framework with a taxonomy that separates Instruction Detachment from Source Detachment. Guided by this taxonomy, we create HalloMTBench, a multilingual, human-verified benchmark across 11 English-to-X directions. We employed 4 frontier LLMs to generate candidates and scrutinize these candidates with an ensemble of LLM judges, and expert validation. In this way, we curate 5,435 high-quality instances. We have evaluated 17 LLMs on HalloMTBench. Results reveal distinct ``hallucination triggers'' -- unique failure patterns reflecting model scale, source length sensitivity, linguistic biases, and Reinforcement-Learning (RL) amplified language mixing. HalloMTBench offers a forward-looking testbed for diagnosing LLM translation failures. HalloMTBench is available in https://huggingface.co/collections/AIDC-AI/marco-mt.


MetricX-25 and GemSpanEval: Google Translate Submissions to the WMT25 Evaluation Shared Task

In this paper, we present our submissions to the unified WMT25 Translation Evaluation Shared Task. For the Quality Score Prediction subtask, we create a new generation of MetricX with improvements in the input format and the training protocol, while for the Error Span Detection subtask we develop a new model, GemSpanEval, trained to predict error spans along with their severities and categories. Both systems are based on the state-of-the-art multilingual open-weights model Gemma 3, fine-tuned on publicly available WMT data. We demonstrate that MetricX-25, adapting Gemma 3 to an encoder-only architecture with a regression head on top, can be trained to effectively predict both MQM and ESA quality scores, and significantly outperforms its predecessor. Our decoder-only GemSpanEval model, on the other hand, we show to be competitive in error span detection with xCOMET, a strong encoder-only sequence-tagging baseline. With error span detection formulated as a generative task, we instruct the model to also output the context for each predicted error span, thus ensuring that error spans are identified unambiguously.


Charting the European LLM Benchmarking Landscape: A New Taxonomy and a Set of Best Practices

While new benchmarks for large language models (LLMs) are being developed continuously to catch up with the growing capabilities of new models and AI in general, using and evaluating LLMs in non-English languages remains a little-charted landscape. We give a concise overview of recent developments in LLM benchmarking, and then propose a new taxonomy for the categorization of benchmarks that is tailored to multilingual or non-English use scenarios. We further propose a set of best practices and quality standards that could lead to a more coordinated development of benchmarks for European languages. Among other recommendations, we advocate for a higher language and culture sensitivity of evaluation methods.


Beyond MCQ: An Open-Ended Arabic Cultural QA Benchmark with Dialect Variants

Large Language Models (LLMs) are increasingly used to answer everyday questions, yet their performance on culturally grounded and dialectal content remains uneven across languages. We propose a comprehensive method that (i) translates Modern Standard Arabic (MSA) multiple-choice questions (MCQs) into English and several Arabic dialects, (ii) converts them into open-ended questions (OEQs), (iii) benchmarks a range of zero-shot and fine-tuned LLMs under both MCQ and OEQ settings, and (iv) generates chain-of-thought (CoT) rationales to fine-tune models for step-by-step reasoning. Using this method, we extend an existing dataset in which QAs are parallelly aligned across multiple language varieties, making it, to our knowledge, the first of its kind. We conduct extensive experiments with both open and closed models. Our findings show that (i) models underperform on Arabic dialects, revealing persistent gaps in culturally grounded and dialect-specific knowledge; (ii) Arabic-centric models perform well on MCQs but struggle with OEQs; and (iii) CoT improves judged correctness while yielding mixed n-gram-based metrics. The developed dataset will be publicly released to support further research on culturally and linguistically inclusive evaluation.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.