Daily MT Picks

Archives
Subscribe
October 30, 2025

Machine Translation Digest for Oct 25 2025

Here is today's selection of cs.CL papers covering diverse topics in machine translation and natural language processing. The highlighted research explores innovative methodologies for extracting stances in multilingual contexts, detecting scientific hallucinations, and enhancing lifelong learning in language models through dynamic sparse neuron masking. Additionally, the collection includes studies on irony detection in Urdu using various models and the development of a large-scale Japanese image-text pair dataset for vision-language integration.


Multilingual Target-Stance Extraction

Social media enables data-driven analysis of public opinion on contested issues. Target-Stance Extraction (TSE) is the task of identifying the target discussed in a document and the document's stance towards that target. Many works classify stance towards a given target in a multilingual setting, but all prior work in TSE is English-only. This work introduces the first multilingual TSE benchmark, spanning Catalan, Estonian, French, Italian, Mandarin, and Spanish corpora. It manages to extend the original TSE pipeline to a multilingual setting without requiring separate models for each language. Our model pipeline achieves a modest F1 score of 12.78, underscoring the increased difficulty of the multilingual task relative to English-only setups and highlighting target prediction as the primary bottleneck. We are also the first to demonstrate the sensitivity of TSE's F1 score to different target verbalizations. Together these serve as a much-needed baseline for resources, algorithms, and evaluation criteria in multilingual TSE.


Confabulations from ACL Publications (CAP): A Dataset for Scientific Hallucination Detection

We introduce the CAP (Confabulations from ACL Publications) dataset, a multilingual resource for studying hallucinations in large language models (LLMs) within scientific text generation. CAP focuses on the scientific domain, where hallucinations can distort factual knowledge, as they frequently do. In this domain, however, the presence of specialized terminology, statistical reasoning, and context-dependent interpretations further exacerbates these distortions, particularly given LLMs' lack of true comprehension, limited contextual understanding, and bias toward surface-level generalization. CAP operates in a cross-lingual setting covering five high-resource languages (English, French, Hindi, Italian, and Spanish) and four low-resource languages (Bengali, Gujarati, Malayalam, and Telugu). The dataset comprises 900 curated scientific questions and over 7000 LLM-generated answers from 16 publicly available models, provided as question-answer pairs along with token sequences and corresponding logits. Each instance is annotated with a binary label indicating the presence of a scientific hallucination, denoted as a factuality error, and a fluency label, capturing issues in the linguistic quality or naturalness of the text. CAP is publicly released to facilitate advanced research on hallucination detection, multilingual evaluation of LLMs, and the development of more reliable scientific NLP systems.


Edit Less, Achieve More: Dynamic Sparse Neuron Masking for Lifelong Knowledge Editing in LLMs

Lifelong knowledge editing enables continuous, precise updates to outdated knowledge in large language models (LLMs) without computationally expensive full retraining. However, existing methods often accumulate errors throughout the editing process, causing a gradual decline in both editing accuracy and generalization. To tackle this problem, we propose Neuron-Specific Masked Knowledge Editing (NMKE), a novel fine-grained editing framework that combines neuron-level attribution with dynamic sparse masking. Leveraging neuron functional attribution, we identify two key types of knowledge neurons, with knowledge-general neurons activating consistently across prompts and knowledge-specific neurons activating to specific prompts. NMKE further introduces an entropy-guided dynamic sparse mask, locating relevant neurons to the target knowledge. This strategy enables precise neuron-level knowledge editing with fewer parameter modifications. Experimental results from thousands of sequential edits demonstrate that NMKE outperforms existing methods in maintaining high editing success rates and preserving model general capabilities in lifelong editing.


Irony Detection in Urdu Text: A Comparative Study Using Machine Learning Models and Large Language Models

Ironic identification is a challenging task in Natural Language Processing, particularly when dealing with languages that differ in syntax and cultural context. In this work, we aim to detect irony in Urdu by translating an English Ironic Corpus into the Urdu language. We evaluate ten state-of-the-art machine learning algorithms using GloVe and Word2Vec embeddings, and compare their performance with classical methods. Additionally, we fine-tune advanced transformer-based models, including BERT, RoBERTa, LLaMA 2 (7B), LLaMA 3 (8B), and Mistral, to assess the effectiveness of large-scale models in irony detection. Among machine learning models, Gradient Boosting achieved the best performance with an F1-score of 89.18%. Among transformer-based models, LLaMA 3 (8B) achieved the highest performance with an F1-score of 94.61%. These results demonstrate that combining transliteration techniques with modern NLP models enables robust irony detection in Urdu, a historically low-resource language.


WAON: Large-Scale and High-Quality Japanese Image-Text Pair Dataset for Vision-Language Models

Large-scale and high-quality image-text pair datasets play an important role in developing high-performing Vision-Language Models (VLMs). In this work, we introduce WAON, a large-scale and high-quality Japanese image-text pair dataset containing approximately 155 million examples, collected from Common Crawl. Our dataset construction pipeline employs various techniques, including filtering and deduplication, which have been shown to be effective in previous studies. To evaluate its effectiveness, we also construct WAON-Bench, a manually curated benchmark for Japanese cultural image classification, consisting of 374 classes. To assess the effectiveness of our dataset, we conduct experiments using both WAON and the Japanese subset of ReLAION, one of the most widely used vision-language datasets. We fine-tune SigLIP2, a strong multilingual model, on both datasets. The results demonstrate that WAON enhances model performance on WAON-Bench more efficiently than ReLAION and achieves higher accuracy across all evaluated benchmarks. Furthermore, the model fine-tuned on WAON achieves state-of-the-art performance on several Japanese cultural benchmarks. We release our dataset, model, and code at https://speed1313.github.io/WAON.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.