Machine Translation Digest for Oct 21 2025
Here is today's selection of cs.CL papers exploring advancements in machine translation and language processing. The common themes include enhancing accessibility through domain-specific applications like Braille instruction tuning and improving robustness in machine-generated text detection. Additionally, efficient domain adaptation for low-resource languages and innovative training techniques for handling ultra-long contexts are highlighted.
BrailleLLM: Braille Instruction Tuning with Large Language Models for Braille Domain Tasks
Braille plays a vital role in education and information accessibility for visually impaired individuals. However, Braille information processing faces challenges such as data scarcity and ambiguities in mixed-text contexts. We construct English and Chinese Braille Mixed Datasets (EBMD/CBMD) with mathematical formulas to support diverse Braille domain research, and propose a syntax tree-based augmentation method tailored for Braille data. To address the underperformance of traditional fine-tuning methods in Braille-related tasks, we investigate Braille Knowledge-Based Fine-Tuning (BKFT), which reduces the learning difficulty of Braille contextual features. BrailleLLM employs BKFT via instruction tuning to achieve unified Braille translation, formula-to-Braille conversion, and mixed-text translation. Experiments demonstrate that BKFT achieves significant performance improvements over conventional fine-tuning in Braille translation scenarios. Our open-sourced datasets and methodologies establish a foundation for low-resource multilingual Braille research.
IMB: An Italian Medical Benchmark for Question Answering
Online medical forums have long served as vital platforms where patients seek professional healthcare advice, generating vast amounts of valuable knowledge. However, the informal nature and linguistic complexity of forum interactions pose significant challenges for automated question answering systems, especially when dealing with non-English languages. We present two comprehensive Italian medical benchmarks: \textbf{IMB-QA}, containing 782,644 patient-doctor conversations from 77 medical categories, and \textbf{IMB-MCQA}, comprising 25,862 multiple-choice questions from medical specialty examinations. We demonstrate how Large Language Models (LLMs) can be leveraged to improve the clarity and consistency of medical forum data while retaining their original meaning and conversational style, and compare a variety of LLM architectures on both open and multiple-choice question answering tasks. Our experiments with Retrieval Augmented Generation (RAG) and domain-specific fine-tuning reveal that specialized adaptation strategies can outperform larger, general-purpose models in medical question answering tasks. These findings suggest that effective medical AI systems may benefit more from domain expertise and efficient information retrieval than from increased model scale. We release both datasets and evaluation frameworks in our GitHub repository to support further research on multilingual medical question answering: https://github.com/PRAISELab-PicusLab/IMB.
DuoLens: A Framework for Robust Detection of Machine-Generated Multilingual Text and Code
The prevalence of Large Language Models (LLMs) for generating multilingual text and source code has only increased the imperative for machine-generated content detectors to be accurate and efficient across domains. Current detectors, predominantly utilizing zero-shot methods, such as Fast DetectGPT or GPTZero, either incur high computational cost or lack sufficient accuracy, often with a trade-off between the two, leaving room for further improvement. To address these gaps, we propose the fine-tuning of encoder-only Small Language Models (SLMs), in particular, the pre-trained models of RoBERTA and CodeBERTa using specialized datasets on source code and other natural language to prove that for the task of binary classification, SLMs outperform LLMs by a huge margin whilst using a fraction of compute. Our encoders achieve AUROC $= 0.97$ to $0.99$ and macro-F1 $0.89$ to $0.94$ while reducing latency by $8$-$12\times$ and peak VRAM by $3$-$5\times$ at $512$-token inputs. Under cross-generator shifts and adversarial transformations (paraphrase, back-translation; code formatting/renaming), performance retains $\geq 92%$ of clean AUROC. We release training and evaluation scripts with seeds and configs; a reproducibility checklist is also included.
SemiAdapt and SemiLoRA: Efficient Domain Adaptation for Transformer-based Low-Resource Language Translation with a Case Study on Irish
Fine-tuning is widely used to tailor large language models for specific tasks such as neural machine translation (NMT). However, leveraging transfer learning is computationally expensive when fine-tuning large multilingual models with billions of parameters, thus creating a barrier to entry for researchers working on low-resource domains such as Irish translation. Parameter-efficient fine-tuning (PEFT) bridges this gap by training on a fraction of the original model parameters, with the Low-Rank Adaptation (LoRA) approach introducing small, trainable adapter layers. We introduce SemiAdapt and SemiLoRA as semi-supervised inference-efficient approaches that strengthen domain adaptation and lead to improved overall performance in NMT. We demonstrate that SemiAdapt can outperform full-domain fine-tuning, while most notably, SemiLoRA can propel PEFT methods to match or even outperform full-model fine-tuning. We further evaluate domain-by-dataset fine-tuning and demonstrate that our embedding-based inference methods perform especially well on larger and noisier corpora. All Irish translation models developed in this work are released as open resources. These methods aim to make high-quality domain adaptation and fine-tuning more accessible to researchers working with low-resource languages.
MTraining: Distributed Dynamic Sparse Attention for Efficient Ultra-Long Context Training
The adoption of long context windows has become a standard feature in Large Language Models (LLMs), as extended contexts significantly enhance their capacity for complex reasoning and broaden their applicability across diverse scenarios. Dynamic sparse attention is a promising approach for reducing the computational cost of long-context. However, efficiently training LLMs with dynamic sparse attention on ultra-long contexts-especially in distributed settings-remains a significant challenge, due in large part to worker- and step-level imbalance. This paper introduces MTraining, a novel distributed methodology leveraging dynamic sparse attention to enable efficient training for LLMs with ultra-long contexts. Specifically, MTraining integrates three key components: a dynamic sparse training pattern, balanced sparse ring attention, and hierarchical sparse ring attention. These components are designed to synergistically address the computational imbalance and communication overheads inherent in dynamic sparse attention mechanisms during the training of models with extensive context lengths. We demonstrate the efficacy of MTraining by training Qwen2.5-3B, successfully expanding its context window from 32K to 512K tokens on a cluster of 32 A100 GPUs. Our evaluations on a comprehensive suite of downstream tasks, including RULER, PG-19, InfiniteBench, and Needle In A Haystack, reveal that MTraining achieves up to a 6x higher training throughput while preserving model accuracy. Our code is available at https://github.com/microsoft/MInference/tree/main/MTraining.
| Curated by yukajii.com |