Daily MT Picks

Subscribe
Archives
October 18, 2025

Machine Translation Digest for Oct 13 2025

Here is today's selection of cs.CL papers in the field of machine translation. The common theme among these papers is the exploration of large language models (LLMs) and their capabilities in enhancing various linguistic tasks, such as multilingual question answering and text preprocessing. Additionally, the papers highlight the role of LLMs in generating synthetic data and automating workflows, showcasing their versatile applications in improving machine translation systems.


Discrepancy Detection at the Data Level: Toward Consistent Multilingual Question Answering

Multilingual question answering (QA) systems must ensure factual consistency across languages, especially for objective queries such as What is jaundice?, while also accounting for cultural variation in subjective responses. We propose MIND, a user-in-the-loop fact-checking pipeline to detect factual and cultural discrepancies in multilingual QA knowledge bases. MIND highlights divergent answers to culturally sensitive questions (e.g., Who assists in childbirth?) that vary by region and context. We evaluate MIND on a bilingual QA system in the maternal and infant health domain and release a dataset of bilingual questions annotated for factual and cultural inconsistencies. We further test MIND on datasets from other domains to assess generalization. In all cases, MIND reliably identifies inconsistencies, supporting the development of more culturally aware and factually consistent QA systems.


End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF: A Reproducibility Study

We present a reproducibility study of the state-of-the-art neural architecture for sequence labeling proposed by Ma and Hovy (2016)\cite{ma2016end}. The original BiLSTM-CNN-CRF model combines character-level representations via Convolutional Neural Networks (CNNs), word-level context modeling through Bi-directional Long Short-Term Memory networks (BiLSTMs), and structured prediction using Conditional Random Fields (CRFs). This end-to-end approach eliminates the need for hand-crafted features while achieving excellent performance on named entity recognition (NER) and part-of-speech (POS) tagging tasks. Our implementation successfully reproduces the key results, achieving 91.18\% F1-score on CoNLL-2003 NER and demonstrating the model's effectiveness across sequence labeling tasks. We provide a detailed analysis of the architecture components and release an open-source PyTorch implementation to facilitate further research.


LLM Reasoning for Machine Translation: Synthetic Data Generation over Thinking Tokens

Large reasoning models (LRMs) have led to new possibilities in terms of problem-solving, through the devising of a natural language thought process prior to answering a query. While their capabilities are well known across mathematics and coding tasks, their impact on the task of machine translation (MT) remains underexplored. In this work, we explore the benefits of the generation of intermediate tokens when performing MT across multiple language pairs of different levels of resourcedness and multiple setups. We find that "thinking tokens" do not help LRMs better perform MT. This result generalizes to models fine-tuned to reason before translating using distilled chain of thought (CoT) inspired by human translators' practices. Specifically, fine-tuning a model with synthetic CoT explanations detailing how to translate step-by-step does not outperform standard input-output fine-tuning. However, constructing the intermediate tokens by combining the outputs of modular translation-specific prompting strategies results in improvements. Our findings underscore that the contribution of intermediate tokens during fine-tuning highly depends on the presence of translation attempts within them. More broadly, our results suggest that using a teacher to refine target translations or to expand parallel corpora is more impactful than distilling their CoT explanations into "thinking" MT models.


Automating Structural Engineering Workflows with Large Language Model Agents

We introduce $\textbf{MASSE}$, the first Multi-Agent System for Structural Engineering, effectively integrating large language model (LLM)-based agents with real-world engineering workflows. Structural engineering is a fundamental yet traditionally stagnant domain, with core workflows remaining largely unchanged for decades despite its substantial economic impact and global market size. Recent advancements in LLMs have significantly enhanced their ability to perform complex reasoning, long-horizon planning, and precise tool utilization -- capabilities well aligned with structural engineering tasks such as interpreting design codes, executing load calculations, and verifying structural capacities. We present a proof-of-concept showing that most real-world structural engineering workflows can be fully automated through a training-free LLM-based multi-agent system. MASSE enables immediate deployment in professional environments, and our comprehensive validation on real-world case studies demonstrates that it can reduce expert workload from approximately two hours to mere minutes, while enhancing both reliability and accuracy in practical engineering scenarios.


Investigating Large Language Models' Linguistic Abilities for Text Preprocessing

Text preprocessing is a fundamental component of Natural Language Processing, involving techniques such as stopword removal, stemming, and lemmatization to prepare text as input for further processing and analysis. Despite the context-dependent nature of the above techniques, traditional methods usually ignore contextual information. In this paper, we investigate the idea of using Large Language Models (LLMs) to perform various preprocessing tasks, due to their ability to take context into account without requiring extensive language-specific annotated resources. Through a comprehensive evaluation on web-sourced data, we compare LLM-based preprocessing (specifically stopword removal, lemmatization and stemming) to traditional algorithms across multiple text classification tasks in six European languages. Our analysis indicates that LLMs are capable of replicating traditional stopword removal, lemmatization, and stemming methods with accuracies reaching 97%, 82%, and 74%, respectively. Additionally, we show that ML algorithms trained on texts preprocessed by LLMs achieve an improvement of up to 6% with respect to the $F_1$ measure compared to traditional techniques. Our code, prompts, and results are publicly available at https://github.com/GianCarloMilanese/llm_pipeline_wi-iat.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.