Daily MT Picks

Subscribe
Archives
October 12, 2025

Machine Translation Digest for Oct 07 2025

Here is today's selection of cs.CL papers in the field of machine translation. The common theme centers around advancing NLP capabilities in diverse linguistic contexts, including low-resource African languages, multilingual question representations, and linguistic variations in mathematical reasoning. Additionally, innovative evaluation methods for reasoning models and attributed text generation are explored.


The African Languages Lab: A Collaborative Approach to Advancing Low-Resource African NLP

Despite representing nearly one-third of the world's languages, African languages remain critically underserved by modern NLP technologies, with 88\% classified as severely underrepresented or completely ignored in computational linguistics. We present the African Languages Lab (All Lab), a comprehensive research initiative that addresses this technological gap through systematic data collection, model development, and capacity building. Our contributions include: (1) a quality-controlled data collection pipeline, yielding the largest validated African multi-modal speech and text dataset spanning 40 languages with 19 billion tokens of monolingual text and 12,628 hours of aligned speech data; (2) extensive experimental validation demonstrating that our dataset, combined with fine-tuning, achieves substantial improvements over baseline models, averaging +23.69 ChrF++, +0.33 COMET, and +15.34 BLEU points across 31 evaluated languages; and (3) a structured research program that has successfully mentored fifteen early-career researchers, establishing sustainable local capacity. Our comparative evaluation against Google Translate reveals competitive performance in several languages while identifying areas that require continued development.


Test-Time Scaling of Reasoning Models for Machine Translation

Test-time scaling (TTS) has enhanced the performance of Reasoning Models (RMs) on various tasks such as math and coding, yet its efficacy in machine translation (MT) remains underexplored. This paper investigates whether increased inference-time computation improves translation quality. We evaluate 12 RMs across a diverse suite of MT benchmarks spanning multiple domains, examining three scenarios: direct translation, forced-reasoning extrapolation, and post-editing. Our findings show that for general-purpose RMs, TTS provides limited and inconsistent benefits for direct translation, with performance quickly plateauing. However, the effectiveness of TTS is unlocked by domain-specific fine-tuning, which aligns a model's reasoning process with task requirements, leading to consistent improvements up to an optimal, self-determined reasoning depth. We also find that forcing a model to reason beyond its natural stopping point consistently degrades translation quality. In contrast, TTS proves highly effective in a post-editing context, reliably turning self-correction into a beneficial process. These results indicate that the value of inference-time computation in MT lies not in enhancing single-pass translation with general models, but in targeted applications like multi-step, self-correction workflows and in conjunction with task-specialized models.


Type and Complexity Signals in Multilingual Question Representations

This work investigates how a multilingual transformer model represents morphosyntactic properties of questions. We introduce the Question Type and Complexity (QTC) dataset with sentences across seven languages, annotated with type information and complexity metrics including dependency length, tree depth, and lexical density. Our evaluation extends probing methods to regression labels with selectivity controls to quantify gains in generalizability. We compare layer-wise probes on frozen Glot500-m (Imani et al., 2023) representations against subword TF-IDF baselines, and a fine-tuned model. Results show that statistical features classify questions effectively in languages with explicit marking, while neural probes capture fine-grained structural complexity patterns better. We use these results to evaluate when contextual representations outperform statistical baselines and whether parameter updates reduce the availability of pre-trained linguistic information.


FinLFQA: Evaluating Attributed Text Generation of LLMs in Financial Long-Form Question Answering

Large Language Models (LLMs) frequently hallucinate to long-form questions, producing plausible yet factually incorrect answers. A common mitigation strategy is to provide attribution to LLM outputs. However, existing benchmarks primarily focus on simple attribution that retrieves supporting textual evidence as references. We argue that in real-world scenarios such as financial applications, attribution goes beyond reference retrieval. We introduce FinLFQA, a benchmark designed to evaluate the ability of LLMs to generate long-form answers to complex financial questions with reliable and nuanced attributions. FinLFQA evaluates three critical aspects of attribution through human annotations: (1) supporting evidence extracted from financial reports, (2) intermediate numerical reasoning steps, and (3) domain-specific financial knowledge that informs the reasoning process. We further provide an automatic evaluation framework covering both answer quality and attribution quality. Through extensive experiments on eight LLMs across multiple attribution-generation paradigms, we find that fine-grained metrics are important to distinguish model capabilities, that end-to-end generation achieves comparable performance to post-hoc approaches, and that iterative refinement only helps when guided by external feedback.


MathRobust-LV: Evaluation of Large Language Models' Robustness to Linguistic Variations in Mathematical Reasoning

Large language models excel on math benchmarks, but their math reasoning robustness to linguistic variation is underexplored. While recent work increasingly treats high-difficulty competitions like the IMO as the gold standard for evaluating reasoning, we believe in comprehensive benchmarking of high school-level math problems in real educational settings. We introduce MathRobust-LV, a test set and evaluation methodology that mirrors how instructors rephrase problems across assessments while keeping difficulty constant: we change surface details (names, contexts, variables) while preserving numerical structure and answers. In contrast to prior efforts that alter problem content or emphasize IMO-level tasks, we focus on high-school-level dataset problems at the difficulty level where models are currently deployed in educational settings: tutoring and assessment systems. In these applications, instructors rephrase identical concepts in varied ways, making linguistic robustness essential for reliable deployment. Although MATH data benchmarking is often regarded as saturated, our experiment on 34 models reveals that accuracy declines when moving from the baseline to the variants. These drops are severe for smaller models (9-11%) while stronger models also show measurable degradation. Frontier models like GPT-5, Gemini-2.5pro remain comparatively stable. Our results highlight that robustness to linguistic variation is a fundamental challenge, exposing reasoning vulnerabilities in models.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.