Daily MT Picks

Archives
Subscribe
December 2, 2025

Machine Translation Digest for Nov 27 2025

Here is today's selection of cs.CL papers. The common theme revolves around advancing multilingual and multimodal capabilities in machine translation and language models, with a focus on ultra-low resource languages, sentiment analysis, and integrating reasoning for enhanced understanding. These studies highlight the importance of linguistic diversity and multimodal data in improving language model performance across various applications.


Exploring Performance Variations in Finetuned Translators of Ultra-Low Resource Languages: Do Linguistic Differences Matter?

Finetuning pre-trained language models with small amounts of data is a commonly-used method to create translators for ultra-low resource languages such as endangered Indigenous languages. However, previous works have reported substantially different performances with translators created using similar methodology and data. In this work we systematically explored possible causes of the performance difference, aiming to determine whether it was a product of different cleaning procedures, limitations of the pre-trained models, the size of the base model, or the size of the training dataset, studying both directions of translation. Our studies, using two Brazilian Indigenous languages, related but with significant structural linguistic characteristics, indicated none or very limited influence from those training factors, suggesting differences between languages may play a significant role in the ability to produce translators by fine-tuning pre-trained models.


ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering

Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.


Modeling Romanized Hindi and Bengali: Dataset Creation and Multilingual LLM Integration

The development of robust transliteration techniques to enhance the effectiveness of transforming Romanized scripts into native scripts is crucial for Natural Language Processing tasks, including sentiment analysis, speech recognition, information retrieval, and intelligent personal assistants. Despite significant advancements, state-of-the-art multilingual models still face challenges in handling Romanized script, where the Roman alphabet is adopted to represent the phonetic structure of diverse languages. Within the South Asian context, where the use of Romanized script for Indo-Aryan languages is widespread across social media and digital communication platforms, such usage continues to pose significant challenges for cutting-edge multilingual models. While a limited number of transliteration datasets and models are available for Indo-Aryan languages, they generally lack sufficient diversity in pronunciation and spelling variations, adequate code-mixed data for large language model (LLM) training, and low-resource adaptation. To address this research gap, we introduce a novel transliteration dataset for two popular Indo-Aryan languages, Hindi and Bengali, which are ranked as the 3rd and 7th most spoken languages worldwide. Our dataset comprises nearly 1.8 million Hindi and 1 million Bengali transliteration pairs. In addition to that, we pre-train a custom multilingual seq2seq LLM based on Marian architecture using the developed dataset. Experimental results demonstrate significant improvements compared to existing relevant models in terms of BLEU and CER metrics.


Sentiment Analysis Of Shopee Product Reviews Using Distilbert

The rapid growth of digital commerce has led to the accumulation of a massive number of consumer reviews on online platforms. Shopee, as one of the largest e-commerce platforms in Southeast Asia, receives millions of product reviews every day containing valuable information regarding customer satisfaction and preferences. Manual analysis of these reviews is inefficient, thus requiring a computational approach such as sentiment analysis. This study examines the use of DistilBERT, a lightweight transformer-based deep learning model, for sentiment classification on Shopee product reviews. The dataset used consists of approximately one million English-language reviews that have been preprocessed and trained using the distilbert-base-uncased model. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics, and compared against benchmark models such as BERT and SVM. The results show that DistilBERT achieved an accuracy of 94.8%, slightly below BERT (95.3%) but significantly higher than SVM (90.2%), with computation time reduced by more than 55%. These findings demonstrate that DistilBERT provides an optimal balance between accuracy and efficiency, making it suitable for large scale sentiment analysis on e-commerce platforms. Keywords: Sentiment Analysis, DistilBERT, Shopee Reviews, Natural Language Processing, Deep Learning, Transformer Models.


From Compound Figures to Composite Understanding: Developing a Multi-Modal LLM from Biomedical Literature with Medical Multiple-Image Benchmarking and Validation

Multi-modal large language models (MLLMs) have shown promise in advancing healthcare. However, most existing models remain confined to single-image understanding, which greatly limits their applicability in clinical workflows. In practice, medical diagnosis and progression often require synthesizing information across multiple images from different modalities or time points. The development of medical MLLMs capable of such multi-image understanding has been hindered by the lack of large-scale, high-quality annotated training data. To address this limitation, we propose a novel framework that leverages license-permissive compound images in biomedical literature, as a rich yet underutilized data source for multi-image analysis. Specifically, we design a five-stage, context-aware instruction generation paradigm underpinned by a divide-and-conquer strategy. By decomposing multi-image analysis into manageable sub-tasks, this paradigm empowers MLLMs to move beyond single-panel analysis and provide a composite understanding by learning the complex spatial, temporal, and cross-modal relationships inherent in these compound figures. By parsing over 237,000 compound figures and their contextual text for instruction generation, we develop M3LLM, a medical multi-image multi-modal large language model. For benchmarking, we construct PMC-MI-Bench for composite understanding, manually validated by medical experts. Extensive experiments show that M3LLM significantly outperforms both general-purpose and specialized medical MLLMs across multi-image, single-image, text-only, and multi-choice scenarios. Notably, M3LLM exhibits strong generalization to longitudinal chest X-ray analysis using the MIMIC dataset. This work establishes a scalable and efficient paradigm for developing medical MLLMs capable of composite reasoning, bridging the gap between biomedical literature and real-world clinical applications.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.