Machine Translation Digest for Nov 19 2025
Here is today's selection of cs.CL papers exploring advancements in multilingual and multimodal language processing. The papers focus on evaluating language models across diverse linguistic and cultural contexts, including vertically written Japanese, Hindi-Telugu language pairs, and sentiment analysis in Arabic.
Evaluating Multimodal Large Language Models on Vertically Written Japanese Text
Multimodal Large Language Models (MLLMs) have seen rapid advances in recent years and are now being applied to visual document understanding tasks. They are expected to process a wide range of document images across languages, including Japanese. Understanding documents from images requires models to read what are written in them. Since some Japanese documents are written vertically, support for vertical writing is essential. However, research specifically focused on vertically written Japanese text remains limited. In this study, we evaluate the reading capability of existing MLLMs on vertically written Japanese text. First, we generate a synthetic Japanese OCR dataset by rendering Japanese texts into images, and use it for both model fine-tuning and evaluation. This dataset includes Japanese text in both horizontal and vertical writing. We also create an evaluation dataset sourced from the real-world document images containing vertically written Japanese text. Using these datasets, we demonstrate that the existing MLLMs perform worse on vertically written Japanese text than on horizontally written Japanese text. Furthermore, we show that training MLLMs on our synthesized Japanese OCR dataset results in improving the performance of models that previously could not handle vertical writing. The datasets and code are publicly available https://github.com/llm-jp/eval_vertical_ja.
Mathematical Analysis of Hallucination Dynamics in Large Language Models: Uncertainty Quantification, Advanced Decoding, and Principled Mitigation
Large Language Models (LLMs) are powerful linguistic engines but remain susceptible to hallucinations: plausible-sounding outputs that are factually incorrect or unsupported. In this work, we present a mathematically grounded framework to understand, measure, and mitigate these hallucinations. Drawing on probabilistic modeling, information theory, trigonometric signal analysis, and Bayesian uncertainty estimation, we analyze how errors compound autoregressively, propose refined uncertainty metrics, including semantic and phase-aware variants, and develop principled mitigation strategies such as contrastive decoding, retrieval-augmented grounding, factual alignment, and abstention. This unified lens connects recent advances in calibration, retrieval, and alignment to support safer and more reliable LLMs.
MAPROC at AHaSIS Shared Task: Few-Shot and Sentence Transformer for Sentiment Analysis of Arabic Hotel Reviews
Sentiment analysis of Arabic dialects presents significant challenges due to linguistic diversity and the scarcity of annotated data. This paper describes our approach to the AHaSIS shared task, which focuses on sentiment analysis on Arabic dialects in the hospitality domain. The dataset comprises hotel reviews written in Moroccan and Saudi dialects, and the objective is to classify the reviewers sentiment as positive, negative, or neutral. We employed the SetFit (Sentence Transformer Fine-tuning) framework, a data-efficient few-shot learning technique. On the official evaluation set, our system achieved an F1 of 73%, ranking 12th among 26 participants. This work highlights the potential of few-shot learning to address data scarcity in processing nuanced dialectal Arabic text within specialized domains like hotel reviews.
Mind the Motions: Benchmarking Theory-of-Mind in Everyday Body Language
Our ability to interpret others' mental states through nonverbal cues (NVCs) is fundamental to our survival and social cohesion. While existing Theory of Mind (ToM) benchmarks have primarily focused on false-belief tasks and reasoning with asymmetric information, they overlook other mental states beyond belief and the rich tapestry of human nonverbal communication. We present Motion2Mind, a framework for evaluating the ToM capabilities of machines in interpreting NVCs. Leveraging an expert-curated body-language reference as a proxy knowledge base, we build Motion2Mind, a carefully curated video dataset with fine-grained nonverbal cue annotations paired with manually verified psychological interpretations. It encompasses 222 types of nonverbal cues and 397 mind states. Our evaluation reveals that current AI systems struggle significantly with NVC interpretation, exhibiting not only a substantial performance gap in Detection, as well as patterns of over-interpretation in Explanation compared to human annotators.
HinTel-AlignBench: A Framework and Benchmark for Hindi-Telugu with English-Aligned Samples
With nearly 1.5 billion people and more than 120 major languages, India represents one of the most diverse regions in the world. As multilingual Vision-Language Models (VLMs) gain prominence, robust evaluation methodologies are essential to drive progress toward equitable AI for low-resource languages. Current multilingual VLM evaluations suffer from four major limitations: reliance on unverified auto-translations, narrow task/domain coverage, limited sample sizes, and lack of cultural and natively sourced Question-Answering (QA). To address these gaps, we present a scalable framework to evaluate VLMs in Indian languages and compare it with performance in English. Using the framework, we generate HinTel-AlignBench, a benchmark that draws from diverse sources in Hindi and Telugu with English-aligned samples. Our contributions are threefold: (1) a semi-automated dataset creation framework combining back-translation, filtering, and human verification; (2) the most comprehensive vision-language benchmark for Hindi and and Telugu, including adapted English datasets (VQAv2, RealWorldQA, CLEVR-Math) and native novel Indic datasets (JEE for STEM, VAANI for cultural grounding) with approximately 4,000 QA pairs per language; and (3) a detailed performance analysis of various State-of-the-Art (SOTA) open-weight and closed-source VLMs. We find a regression in performance for tasks in English versus in Indian languages for 4 out of 5 tasks across all the models, with an average regression of 8.3 points in Hindi and 5.5 points for Telugu. We categorize common failure modes to highlight concrete areas of improvement in multilingual multimodal understanding.