Machine Translation Digest for Nov 18 2025
Here is today's selection of cs.CL papers that delve into advancements in tokenization and its impact on various domains. The papers explore strategies for subword tokenization in Kurdish, the influence of vocabulary extension on chemistry representation, and the alignment of language models with specific reasoning tasks, highlighting the critical role of tokenization in enhancing model performance across diverse applications.
Subword Tokenization Strategies for Kurdish Word Embeddings
We investigate tokenization strategies for Kurdish word embeddings by comparing word-level, morpheme-based, and BPE approaches on morphological similarity preservation tasks. We develop a BiLSTM-CRF morphological segmenter using bootstrapped training from minimal manual annotation and evaluate Word2Vec embeddings across comprehensive metrics including similarity preservation, clustering quality, and semantic organization. Our analysis reveals critical evaluation biases in tokenization comparison. While BPE initially appears superior in morphological similarity, it evaluates only 28.6\% of test cases compared to 68.7\% for morpheme model, creating artificial performance inflation. When assessed comprehensively, morpheme-based tokenization demonstrates superior embedding space organization, better semantic neighborhood structure, and more balanced coverage across morphological complexity levels. These findings highlight the importance of coverage-aware evaluation in low-resource language processing and offers different tokenization methods for low-resourced language processing.
MuCPT: Music-related Natural Language Model Continued Pretraining
Large language models perform strongly on general tasks but remain constrained in specialized settings such as music, particularly in the music-entertainment domain, where corpus scale, purity, and the match between data and training objectives are critical. We address this by constructing a large, music-related natural language corpus (40B tokens) that combines open source and in-house data, and by implementing a domain-first data pipeline: a lightweight classifier filters and weights in-domain text, followed by multi-stage cleaning, de-duplication, and privacy-preserving masking. We further integrate multi-source music text with associated metadata to form a broader, better-structured foundation of domain knowledge. On the training side, we introduce reference-model (RM)-based token-level soft scoring for quality control: a unified loss-ratio criterion is used both for data selection and for dynamic down-weighting during optimization, reducing noise gradients and amplifying task-aligned signals, thereby enabling more effective music-domain continued pretraining and alignment. To assess factuality, we design the MusicSimpleQA benchmark, which adopts short, single-answer prompts with automated agreement scoring. Beyond the benchmark design, we conduct systematic comparisons along the axes of data composition. Overall, this work advances both the right corpus and the right objective, offering a scalable data-training framework and a reusable evaluation tool for building domain LLMs in the music field.
The Tokenization Bottleneck: How Vocabulary Extension Improves Chemistry Representation Learning in Pretrained Language Models
The application of large language models (LLMs) to chemistry is frequently hampered by a "tokenization bottleneck", where tokenizers tuned on general-domain text tend to fragment chemical representations such as SMILES into semantically uninformative sub-tokens. This paper introduces a principled methodology to resolve this bottleneck by unifying the representation of natural language and molecular structures within a single model. Our approach involves targeted vocabulary extension-augmenting a pretrained LLM's vocabulary with chemically salient tokens, followed by continued pretraining on chemistry-domain text to integrate this new knowledge. We provide an empirical demonstration of the effectiveness of this strategy, showing that our methodology leads to superior performance on a range of downstream chemical tasks.
SMRC: Aligning Large Language Models with Student Reasoning for Mathematical Error Correction
Large language models (LLMs) often make reasoning errors when solving mathematical problems, and how to automatically detect and correct these errors has become an important research direction. However, existing approaches \textit{mainly focus on self-correction within the model}, which falls short of the teacher-style correction required in educational settings, \textit{i.e.}, systematically guiding and revising a student's problem-solving process. To address this gap, we propose \texttt{SMRC} (\textit{\underline{S}tudent \underline{M}athematical \underline{R}easoning \underline{C}orrection}), a novel method that aligns LLMs with student reasoning. Specifically, \texttt{SMRC} formulates student reasoning as a multi-step sequential decision problem and introduces Monte Carlo Tree Search (MCTS) to explore optimal correction paths. To reduce the cost of the annotating process-level rewards, we leverage breadth-first search (BFS) guided by LLMs and final-answer evaluation to generate reward signals, which are then distributed across intermediate reasoning steps via a back-propagation mechanism, enabling fine-grained process supervision. Additionally, we construct a benchmark for high school mathematics, MSEB (Multi-Solution Error Benchmark), consisting of 158 instances that include problem statements, student solutions, and correct reasoning steps. We further propose a dual evaluation protocol centered on \textbf{solution accuracy} and \textbf{correct-step retention}, offering a comprehensive measure of educational applicability. Experiments demonstrate that \texttt{SMRC} significantly outperforms existing methods on two public datasets (ProcessBench and MR-GSM8K) and our MSEB in terms of effectiveness and overall performance. The code and data are available at https://github.com/Mind-Lab-ECNU/SMRC.
Examining the Metrics for Document-Level Claim Extraction in Czech and Slovak
Document-level claim extraction remains an open challenge in the field of fact-checking, and subsequently, methods for evaluating extracted claims have received limited attention. In this work, we explore approaches to aligning two sets of claims pertaining to the same source document and computing their similarity through an alignment score. We investigate techniques to identify the best possible alignment and evaluation method between claim sets, with the aim of providing a reliable evaluation framework. Our approach enables comparison between model-extracted and human-annotated claim sets, serving as a metric for assessing the extraction performance of models and also as a possible measure of inter-annotator agreement. We conduct experiments on newly collected dataset-claims extracted from comments under Czech and Slovak news articles-domains that pose additional challenges due to the informal language, strong local context, and subtleties of these closely related languages. The results draw attention to the limitations of current evaluation approaches when applied to document-level claim extraction and highlight the need for more advanced methods-ones able to correctly capture semantic similarity and evaluate essential claim properties such as atomicity, checkworthiness, and decontextualization.