Daily MT Picks

Archives
Subscribe
November 22, 2025

Machine Translation Digest for Nov 17 2025

Here is today's selection of cs.CL papers, focusing on advancements in translation quality and evaluation methods. The papers explore innovative approaches, such as using quality estimation for error correction, non-linear models for scoring translations, and statistical frameworks for system evaluation, while also examining large language models' capabilities in specific linguistic tasks like diacritic restoration.


Can QE-informed (Re)Translation lead to Error Correction?

The paper presents two approaches submitted to the WMT 2025 Automated Translation Quality Evaluation Systems Task 3 - Quality Estimation (QE)-informed Segment-level Error Correction. While jointly training QE systems with Automatic Post-Editing (APE) has shown improved performance for both tasks, APE systems are still known to overcorrect the output of Machine Translation (MT), leading to a degradation in performance. We investigate a simple training-free approach - QE-informed Retranslation, and compare it with another within the same training-free paradigm. Our winning approach selects the highest-quality translation from multiple candidates generated by different LLMs. The second approach, more akin to APE, instructs an LLM to replace error substrings as specified in the provided QE explanation(s). A conditional heuristic was employed to minimise the number of edits, with the aim of maximising the Gain-to-Edit ratio. The two proposed approaches achieved a Delta COMET score of 0.0201 and -0.0108, respectively, leading the first approach to achieve the winning position on the subtask leaderboard.


Non-Linear Scoring Model for Translation Quality Evaluation

Analytic Translation Quality Evaluation (TQE), based on Multidimensional Quality Metrics (MQM), traditionally uses a linear error-to-penalty scale calibrated to a reference sample of 1000-2000 words. However, linear extrapolation biases judgment on samples of different sizes, over-penalizing short samples and under-penalizing long ones, producing misalignment with expert intuition. Building on the Multi-Range framework, this paper presents a calibrated, non-linear scoring model that better reflects how human content consumers perceive translation quality across samples of varying length. Empirical data from three large-scale enterprise environments shows that acceptable error counts grow logarithmically, not linearly, with sample size. Psychophysical and cognitive evidence, including the Weber-Fechner law and Cognitive Load Theory, supports this premise by explaining why the perceptual impact of additional errors diminishes while the cognitive burden grows with scale. We propose a two-parameter model E(x) = a * ln(1 + b * x), a, b > 0, anchored to a reference tolerance and calibrated from two tolerance points using a one-dimensional root-finding step. The model yields an explicit interval within which the linear approximation stays within +/-20 percent relative error and integrates into existing evaluation workflows with only a dynamic tolerance function added. The approach improves interpretability, fairness, and inter-rater reliability across both human and AI-generated translations. By operationalizing a perceptually valid scoring paradigm, it advances translation quality evaluation toward more accurate and scalable assessment. The model also provides a stronger basis for AI-based document-level evaluation aligned with human judgment. Implementation considerations for CAT/LQA systems and implications for human and AI-generated text evaluation are discussed.


Translation Entropy: A Statistical Framework for Evaluating Translation Systems

The translation of written language has been known since the 3rd century BC; however, its necessity has become increasingly common in the information age. Today, many translators exist, based on encoder-decoder deep architectures, nevertheless, no quantitative objective methods are available to assess their performance, likely because the entropy of even a single language remains unknown. This study presents a quantitative method for estimating translation entropy, with the following key finding. Given a translator, several sentences that differ by only one selected token of a given pivot sentence yield identical translations. Analyzing the statistics of this phenomenon across an ensemble of such sentences, consisting each of a pivot selected token, yields the probabilities of replacing this specific token with others while preserving the translation. These probabilities constitute the entropy of the selected token, and the average across all selected pivot tokens provides an estimate of the translator's overall translation entropy, which is enhanced along the decoder blocks. This entropic measure allows for the quantitative ranking of several publicly available translators and reveals whether mutual translation entropy is symmetric. Extending the proposed method to include the replacement of two tokens in a given pivot sentence demonstrates a multiplicative effect, where translation degeneracy is proportional to the product of the degeneracies of the two tokens. These findings establish translation entropy as a measurable property and objective benchmarking of artificial translators. Results are based on MarianMT, T5-Base and NLLB-200 translators.


Evaluating Large Language Models for Diacritic Restoration in Romanian Texts: A Comparative Study

Automatic diacritic restoration is crucial for text processing in languages with rich diacritical marks, such as Romanian. This study evaluates the performance of several large language models (LLMs) in restoring diacritics in Romanian texts. Using a comprehensive corpus, we tested models including OpenAI's GPT-3.5, GPT-4, GPT-4o, Google's Gemini 1.0 Pro, Meta's Llama 2 and Llama 3, MistralAI's Mixtral 8x7B Instruct, airoboros 70B, and OpenLLM-Ro's RoLlama 2 7B, under multiple prompt templates ranging from zero-shot to complex multi-shot instructions. Results show that models such as GPT-4o achieve high diacritic restoration accuracy, consistently surpassing a neutral echo baseline, while others, including Meta's Llama family, exhibit wider variability. These findings highlight the impact of model architecture, training data, and prompt design on diacritic restoration performance and outline promising directions for improving NLP tools for diacritic-rich languages.


From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models

With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.