Daily MT Picks

Archives
Subscribe
November 20, 2025

Machine Translation Digest for Nov 15 2025

Here is today's selection of cs.CL papers exploring advances in machine translation and entity recognition. A common theme is the integration of reasoning and fine-tuning techniques to enhance language models, with applications ranging from translation tasks to entity recognition in dialogues and summarization. These studies highlight the dual challenges and opportunities in leveraging reasoning for improved model performance.


Exploring Parameter-Efficient Fine-Tuning and Backtranslation for the WMT 25 General Translation Task

In this paper, we explore the effectiveness of combining fine-tuning and backtranslation on a small Japanese corpus for neural machine translation. Starting from a baseline English{\textrightarrow}Japanese model (COMET = 0.460), we first apply backtranslation (BT) using synthetic data generated from monolingual Japanese corpora, yielding a modest increase (COMET = 0.468). Next, we fine-tune (FT) the model on a genuine small parallel dataset drawn from diverse Japanese news and literary corpora, achieving a substantial jump to COMET = 0.589 when using Mistral 7B. Finally, we integrate both backtranslation and fine-tuning{ -- }first augmenting the small dataset with BT generated examples, then adapting via FT{ -- }which further boosts performance to COMET = 0.597. These results demonstrate that, even with limited training data, the synergistic use of backtranslation and targeted fine-tuning on Japanese corpora can significantly enhance translation quality, outperforming each technique in isolation. This approach offers a lightweight yet powerful strategy for improving low-resource language pairs.


Critical or Compliant? The Double-Edged Sword of Reasoning in Chain-of-Thought Explanations

Explanations are often promoted as tools for transparency, but they can also foster confirmation bias; users may assume reasoning is correct whenever outputs appear acceptable. We study this double-edged role of Chain-of-Thought (CoT) explanations in multimodal moral scenarios by systematically perturbing reasoning chains and manipulating delivery tones. Specifically, we analyze reasoning errors in vision language models (VLMs) and how they impact user trust and the ability to detect errors. Our findings reveal two key effects: (1) users often equate trust with outcome agreement, sustaining reliance even when reasoning is flawed, and (2) the confident tone suppresses error detection while maintaining reliance, showing that delivery styles can override correctness. These results highlight how CoT explanations can simultaneously clarify and mislead, underscoring the need for NLP systems to provide explanations that encourage scrutiny and critical thinking rather than blind trust. All code will be released publicly.


A Reasoning Paradigm for Named Entity Recognition

Generative LLMs typically improve Named Entity Recognition (NER) performance through instruction tuning. They excel at generating entities by semantic pattern matching but lack an explicit, verifiable reasoning mechanism. This "cognitive shortcutting" leads to suboptimal performance and brittle generalization, especially in zero-shot and lowresource scenarios where reasoning from limited contextual cues is crucial. To address this issue, a reasoning framework is proposed for NER, which shifts the extraction paradigm from implicit pattern matching to explicit reasoning. This framework consists of three stages: Chain of Thought (CoT) generation, CoT tuning, and reasoning enhancement. First, a dataset annotated with NER-oriented CoTs is generated, which contain task-relevant reasoning chains. Then, they are used to tune the NER model to generate coherent rationales before deriving the final answer. Finally, a reasoning enhancement stage is implemented to optimize the reasoning process using a comprehensive reward signal. This stage ensures explicit and verifiable extractions. Experiments show that ReasoningNER demonstrates impressive cognitive ability in the NER task, achieving competitive performance. In zero-shot settings, it achieves state-of-the-art (SOTA) performance, outperforming GPT-4 by 12.3 percentage points on the F1 score. Analytical results also demonstrate its great potential to advance research in reasoningoriented information extraction. Our codes are available at https://github.com/HuiResearch/ReasoningIE.


MME-RAG: Multi-Manager-Expert Retrieval-Augmented Generation for Fine-Grained Entity Recognition in Task-Oriented Dialogues

Fine-grained entity recognition is crucial for reasoning and decision-making in task-oriented dialogues, yet current large language models (LLMs) continue to face challenges in domain adaptation and retrieval controllability. We introduce MME-RAG, a Multi-Manager-Expert Retrieval-Augmented Generation framework that decomposes entity recognition into two coordinated stages: type-level judgment by lightweight managers and span-level extraction by specialized experts. Each expert is supported by a KeyInfo retriever that injects semantically aligned, few-shot exemplars during inference, enabling precise and domain-adaptive extraction without additional training. Experiments on CrossNER, MIT-Movie, MIT-Restaurant, and our newly constructed multi-domain customer-service dataset demonstrate that MME-RAG performs better than recent baselines in most domains. Ablation studies further show that both the hierarchical decomposition and KeyInfo-guided retrieval are key drivers of robustness and cross-domain generalization, establishing MME-RAG as a scalable and interpretable solution for adaptive dialogue understanding.


AugAbEx : Way Forward for Extractive Case Summarization

Summarization of legal judgments poses a heavy cognitive burden on law practitioners due to the complexity of the language, context-sensitive legal jargon, and the length of the document. Therefore, the automatic summarization of legal documents has attracted serious attention from natural language processing researchers. Since the abstractive summaries of legal documents generated by deep neural methods remain prone to the risk of misrepresenting nuanced legal jargon or overlooking key contextual details, we envisage a rising trend toward the use of extractive case summarizers. Given the high cost of human annotation for gold standard extractive summaries, we engineer a light and transparent pipeline that leverages existing abstractive gold standard summaries to create the corresponding extractive gold standard versions. The approach ensures that the experts` opinions ensconced in the original gold standard abstractive summaries are carried over to the transformed extractive summaries. We aim to augment seven existing case summarization datasets, which include abstractive summaries, by incorporating corresponding extractive summaries and create an enriched data resource for case summarization research community. To ensure the quality of the augmented extractive summaries, we perform an extensive comparative evaluation with the original abstractive gold standard summaries covering structural, lexical, and semantic dimensions. We also compare the domain-level information of the two summaries. We commit to release the augmented datasets in the public domain for use by the research community and believe that the resource will offer opportunities to advance the field of automatic summarization of legal documents.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.