Daily MT Picks

Archives
Subscribe
November 18, 2025

Machine Translation Digest for Nov 13 2025

Here is today's selection of cs.CL papers focused on enhancing language model applications across various domains. Key themes include improving domain-specific language processing, such as legal, financial, and health-related text, as well as advancing multilingual capabilities with synthetic data generation for lesser-resourced languages.


NumPert: Numerical Perturbations to Probe Language Models for Veracity Prediction

Large language models show strong performance on knowledge intensive tasks such as fact-checking and question answering, yet they often struggle with numerical reasoning. We present a systematic evaluation of state-of-the-art models for veracity prediction on numerical claims and evidence pairs using controlled perturbations, including label-flipping probes, to test robustness. Our results indicate that even leading proprietary systems experience accuracy drops of up to 62\% under certain perturbations. No model proves to be robust across all conditions. We further find that increasing context length generally reduces accuracy, but when extended context is enriched with perturbed demonstrations, most models substantially recover. These findings highlight critical limitations in numerical fact-checking and suggest that robustness remains an open challenge for current language models.


TermGPT: Multi-Level Contrastive Fine-Tuning for Terminology Adaptation in Legal and Financial Domain

Large language models (LLMs) have demonstrated impressive performance in text generation tasks; however, their embedding spaces often suffer from the isotropy problem, resulting in poor discrimination of domain-specific terminology, particularly in legal and financial contexts. This weakness in terminology-level representation can severely hinder downstream tasks such as legal judgment prediction or financial risk analysis, where subtle semantic distinctions are critical. To address this problem, we propose TermGPT, a multi-level contrastive fine-tuning framework designed for terminology adaptation. We first construct a sentence graph to capture semantic and structural relations, and generate semantically consistent yet discriminative positive and negative samples based on contextual and topological cues. We then devise a multi-level contrastive learning approach at both the sentence and token levels, enhancing global contextual understanding and fine-grained terminology discrimination. To support robust evaluation, we construct the first financial terminology dataset derived from official regulatory documents. Experiments show that TermGPT outperforms existing baselines in term discrimination tasks within the finance and legal domains.


Regional Attention-Enhanced Swin Transformer for Clinically Relevant Medical Image Captioning

Automated medical image captioning translates complex radiological images into diagnostic narratives that can support reporting workflows. We present a Swin-BART encoder-decoder system with a lightweight regional attention module that amplifies diagnostically salient regions before cross-attention. Trained and evaluated on ROCO, our model achieves state-of-the-art semantic fidelity while remaining compact and interpretable. We report results as mean$\pm$std over three seeds and include $95\%$ confidence intervals. Compared with baselines, our approach improves ROUGE (proposed 0.603, ResNet-CNN 0.356, BLIP2-OPT 0.255) and BERTScore (proposed 0.807, BLIP2-OPT 0.645, ResNet-CNN 0.623), with competitive BLEU, CIDEr, and METEOR. We further provide ablations (regional attention on/off and token-count sweep), per-modality analysis (CT/MRI/X-ray), paired significance tests, and qualitative heatmaps that visualize the regions driving each description. Decoding uses beam search (beam size $=4$), length penalty $=1.1$, $no_repeat_ngram_size$ $=3$, and max length $=128$. The proposed design yields accurate, clinically phrased captions and transparent regional attributions, supporting safe research use with a human in the loop.


Faithful Summarization of Consumer Health Queries: A Cross-Lingual Framework with LLMs

Summarizing consumer health questions (CHQs) can ease communication in healthcare, but unfaithful summaries that misrepresent medical details pose serious risks. We propose a framework that combines TextRank-based sentence extraction and medical named entity recognition with large language models (LLMs) to enhance faithfulness in medical text summarization. In our experiments, we fine-tuned the LLaMA-2-7B model on the MeQSum (English) and BanglaCHQ-Summ (Bangla) datasets, achieving consistent improvements across quality (ROUGE, BERTScore, readability) and faithfulness (SummaC, AlignScore) metrics, and outperforming zero-shot baselines and prior systems. Human evaluation further shows that over 80\% of generated summaries preserve critical medical information. These results highlight faithfulness as an essential dimension for reliable medical summarization and demonstrate the potential of our approach for safer deployment of LLMs in healthcare contexts.


BhashaKritika: Building Synthetic Pretraining Data at Scale for Indic Languages

In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.