Machine Translation Digest for Nov 04 2025
Here is today's selection of cs.CL papers exploring advancements and challenges in machine translation. The papers delve into error analysis and correction, including lexical errors from English to Romanian and targeted error correction in knowledge distillation. Additionally, they address the detection of machine translation outputs and the role of pragmatic explicitation, highlighting ongoing efforts to refine and evaluate translation models.
The Analysis of Lexical Errors in Machine Translation from English into Romanian
The research explores error analysis in the performance of translating by Machine Translation from English into Romanian, and it focuses on lexical errors found in texts which include official information, provided by the World Health Organization (WHO), the Gavi Organization, by the patient information leaflet (the information about the active ingredients of the vaccines or the medication, the indications, the dosage instructions, the storage instructions, the side effects and warning, etc.). All of these texts are related to Covid-19 and have been translated by Google Translate, a multilingual Machine Translation that was created by Google. In the last decades, Google has actively worked to develop a more accurate and fluent automatic translation system. This research, specifically focused on improving Google Translate, aims to enhance the overall quality of Machine Translation by achieving better lexical selection and by reducing errors. The investigation involves a comprehensive analysis of 230 texts that have been translated from English into Romanian.
Automatic Machine Translation Detection Using a Surrogate Multilingual Translation Model
Modern machine translation (MT) systems depend on large parallel corpora, often collected from the Internet. However, recent evidence indicates that (i) a substantial portion of these texts are machine-generated translations, and (ii) an overreliance on such synthetic content in training data can significantly degrade translation quality. As a result, filtering out non-human translations is becoming an essential pre-processing step in building high-quality MT systems. In this work, we propose a novel approach that directly exploits the internal representations of a surrogate multilingual MT model to distinguish between human and machine-translated sentences. Experimental results show that our method outperforms current state-of-the-art techniques, particularly for non-English language pairs, achieving gains of at least 5 percentage points of accuracy.
PragExTra: A Multilingual Corpus of Pragmatic Explicitation in Translation
Translators often enrich texts with background details that make implicit cultural meanings explicit for new audiences. This phenomenon, known as pragmatic explicitation, has been widely discussed in translation theory but rarely modeled computationally. We introduce PragExTra, the first multilingual corpus and detection framework for pragmatic explicitation. The corpus covers eight language pairs from TED-Multi and Europarl and includes additions such as entity descriptions, measurement conversions, and translator remarks. We identify candidate explicitation cases through null alignments and refined using active learning with human annotation. Our results show that entity and system-level explicitations are most frequent, and that active learning improves classifier accuracy by 7-8 percentage points, achieving up to 0.88 accuracy and 0.82 F1 across languages. PragExTra establishes pragmatic explicitation as a measurable, cross-linguistic phenomenon and takes a step towards building culturally aware machine translation. Keywords: translation, multilingualism, explicitation
Demo: Statistically Significant Results On Biases and Errors of LLMs Do Not Guarantee Generalizable Results
Recent research has shown that hallucinations, omissions, and biases are prevalent in everyday use-cases of LLMs. However, chatbots used in medical contexts must provide consistent advice in situations where non-medical factors are involved, such as when demographic information is present. In order to understand the conditions under which medical chatbots fail to perform as expected, we develop an infrastructure that 1) automatically generates queries to probe LLMs and 2) evaluates answers to these queries using multiple LLM-as-a-judge setups and prompts. For 1), our prompt creation pipeline samples the space of patient demographics, histories, disorders, and writing styles to create realistic questions that we subsequently use to prompt LLMs. In 2), our evaluation pipeline provides hallucination and omission detection using LLM-as-a-judge as well as agentic workflows, in addition to LLM-as-a-judge treatment category detectors. As a baseline study, we perform two case studies on inter-LLM agreement and the impact of varying the answering and evaluation LLMs. We find that LLM annotators exhibit low agreement scores (average Cohen's Kappa $\kappa=0.118$), and only specific (answering, evaluation) LLM pairs yield statistically significant differences across writing styles, genders, and races. We recommend that studies using LLM evaluation use multiple LLMs as evaluators in order to avoid arriving at statistically significant but non-generalizable results, particularly in the absence of ground-truth data. We also suggest publishing inter-LLM agreement metrics for transparency. Our code and dataset are available here: https://github.com/BBN-E/medic-neurips-2025-demo.
Targeted Error Correction in Knowledge Distillation: Small Language Models Surpass GPT
We introduce an Analyze-Revise-Finetune (ARF) pipeline that enables smaller open-source language models (LLMs) to surpass substantially larger proprietary models in customer service summarization tasks. The pipeline first analyzes and categorizes common errors in summaries produced by a teacher model (GPT-3.5), then performs a targeted revision using a compact editor model (Llama 3.1 70B) to generate high-quality, refined training data. Fine-tuning a smaller student model (Llama 3.1 8B) on this refined data resulted in superior summarization performance compared to GPT-3.5. The ARF pipeline improves cost efficiency and data privacy while maintaining competitive accuracy, illustrating a generalizable framework for enhancing open-source LLMs across diverse downstream applications.