Machine Translation Digest for Nov 02 2025
Here is today's selection of cs.CL papers focusing on the intersection of multilingual and multimodal resources in machine translation and language models. The papers explore the creation and utilization of large-scale multilingual datasets, the development of methodologies for improving machine-generated text detection, and the evaluation of language models' empathy and understanding in medical applications.
HPLT 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono- and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models
We present an ongoing initiative to provide open, very large, high-quality, and richly annotated textual datasets for almost 200 languages. At 30 trillion tokens, this is likely the largest generally available multilingual collection of LLM pre-training data. These datasets are derived from web crawls from different sources and accompanied with a complete, open-source pipeline for document selection from web archives, text extraction from HTML, language identification for noisy texts, exact and near-deduplication, annotation with, among others, register labels, text quality estimates, and personally identifiable information; and final selection and filtering. We report on data quality probes through contrastive and analytical statistics, through manual inspection of samples for 24 languages, and through end-to-end evaluation of various language model architectures trained on this data. For multilingual LLM evaluation, we provide a comprehensive collection of benchmarks for nine European languages, with special emphasis on natively created tasks, mechanisms to mitigate prompt sensitivity, and refined normalization and aggregation of scores. Additionally, we train and evaluate a family of 57 monolingual encoder-decoder models, as well as a handful of monolingual GPT-like reference models. Besides the monolingual data and models, we also present a very large collection of parallel texts automatically mined from this data, together with a novel parallel corpus synthesized via machine translation.
Advancing Machine-Generated Text Detection from an Easy to Hard Supervision Perspective
Existing machine-generated text (MGT) detection methods implicitly assume labels as the "golden standard". However, we reveal boundary ambiguity in MGT detection, implying that traditional training paradigms are inexact. Moreover, limitations of human cognition and the superintelligence of detectors make inexact learning widespread and inevitable. To this end, we propose an easy-to-hard enhancement framework to provide reliable supervision under such inexact conditions. Distinct from knowledge distillation, our framework employs an easy supervisor targeting relatively simple longer-text detection tasks (despite weaker capabilities), to enhance the more challenging target detector. Firstly, longer texts targeted by supervisors theoretically alleviate the impact of inexact labels, laying the foundation for reliable supervision. Secondly, by structurally incorporating the detector into the supervisor, we theoretically model the supervisor as a lower performance bound for the detector. Thus, optimizing the supervisor indirectly optimizes the detector, ultimately approximating the underlying "golden" labels. Extensive experiments across diverse practical scenarios, including cross-LLM, cross-domain, mixed text, and paraphrase attacks, demonstrate the framework's significant detection effectiveness. The code is available at: https://github.com/tmlr-group/Easy2Hard.
Building a Silver-Standard Dataset from NICE Guidelines for Clinical LLMs
Large language models (LLMs) are increasingly used in healthcare, yet standardised benchmarks for evaluating guideline-based clinical reasoning are missing. This study introduces a validated dataset derived from publicly available guidelines across multiple diagnoses. The dataset was created with the help of GPT and contains realistic patient scenarios, as well as clinical questions. We benchmark a range of recent popular LLMs to showcase the validity of our dataset. The framework supports systematic evaluation of LLMs' clinical utility and guideline adherence.
The Biased Oracle: Assessing LLMs' Understandability and Empathy in Medical Diagnoses
Large language models (LLMs) show promise for supporting clinicians in diagnostic communication by generating explanations and guidance for patients. Yet their ability to produce outputs that are both understandable and empathetic remains uncertain. We evaluate two leading LLMs on medical diagnostic scenarios, assessing understandability using readability metrics as a proxy and empathy through LLM-as-a-Judge ratings compared to human evaluations. The results indicate that LLMs adapt explanations to socio-demographic variables and patient conditions. However, they also generate overly complex content and display biased affective empathy, leading to uneven accessibility and support. These patterns underscore the need for systematic calibration to ensure equitable patient communication. The code and data are released: https://github.com/Jeffateth/Biased_Oracle
ColMate: Contrastive Late Interaction and Masked Text for Multimodal Document Retrieval
Retrieval-augmented generation has proven practical when models require specialized knowledge or access to the latest data. However, existing methods for multimodal document retrieval often replicate techniques developed for text-only retrieval, whether in how they encode documents, define training objectives, or compute similarity scores. To address these limitations, we present ColMate, a document retrieval model that bridges the gap between multimodal representation learning and document retrieval. ColMate utilizes a novel OCR-based pretraining objective, a self-supervised masked contrastive learning objective, and a late interaction scoring mechanism more relevant to multimodal document structures and visual characteristics. ColMate obtains 3.61% improvements over existing retrieval models on the ViDoRe V2 benchmark, demonstrating stronger generalization to out-of-domain benchmarks.