Daily MT Picks

Subscribe
Archives
July 2, 2025

Machine Translation Digest for Jun 27 2025

Here is today's selection of cs.CL papers exploring diverse themes in machine translation and language technologies. A common focus is the evaluation and enhancement of machine translation systems, including the comparison of large language models with neural machine translation in handling translationese and literary styles, as well as improving the robustness of translation tools against paraphrasing attacks.


Decoding Machine Translationese in English-Chinese News: LLMs vs. NMTs

This study explores Machine Translationese (MTese) -- the linguistic peculiarities of machine translation outputs -- focusing on the under-researched English-to-Chinese language pair in news texts. We construct a large dataset consisting of 4 sub-corpora and employ a comprehensive five-layer feature set. Then, a chi-square ranking algorithm is applied for feature selection in both classification and clustering tasks. Our findings confirm the presence of MTese in both Neural Machine Translation systems (NMTs) and Large Language Models (LLMs). Original Chinese texts are nearly perfectly distinguishable from both LLM and NMT outputs. Notable linguistic patterns in MT outputs are shorter sentence lengths and increased use of adversative conjunctions. Comparing LLMs and NMTs, we achieve approximately 70% classification accuracy, with LLMs exhibiting greater lexical diversity and NMTs using more brackets. Additionally, translation-specific LLMs show lower lexical diversity but higher usage of causal conjunctions compared to generic LLMs. Lastly, we find no significant differences between LLMs developed by Chinese firms and their foreign counterparts.


Can Peter Pan Survive MT? A Stylometric Study of LLMs, NMTs, and HTs in Children's Literature Translation

This study focuses on evaluating the performance of machine translations (MTs) compared to human translations (HTs) in English-to-Chinese children's literature translation (CLT) from a stylometric perspective. The research constructs a Peter Pan corpus, comprising 21 translations: 7 human translations (HTs), 7 large language model translations (LLMs), and 7 neural machine translation outputs (NMTs). The analysis employs a generic feature set (including lexical, syntactic, readability, and n-gram features) and a creative text translation (CTT-specific) feature set, which captures repetition, rhythm, translatability, and miscellaneous levels, yielding 447 linguistic features in total. Using classification and clustering techniques in machine learning, we conduct a stylometric analysis of these translations. Results reveal that in generic features, HTs and MTs exhibit significant differences in conjunction word distributions and the ratio of 1-word-gram-YiYang, while NMTs and LLMs show significant variation in descriptive words usage and adverb ratios. Regarding CTT-specific features, LLMs outperform NMTs in distribution, aligning more closely with HTs in stylistic characteristics, demonstrating the potential of LLMs in CLT.


Temperature Matters: Enhancing Watermark Robustness Against Paraphrasing Attacks

In the present-day scenario, Large Language Models (LLMs) are establishing their presence as powerful instruments permeating various sectors of society. While their utility offers valuable support to individuals, there are multiple concerns over potential misuse. Consequently, some academic endeavors have sought to introduce watermarking techniques, characterized by the inclusion of markers within machine-generated text, to facilitate algorithmic identification. This research project is focused on the development of a novel methodology for the detection of synthetic text, with the overarching goal of ensuring the ethical application of LLMs in AI-driven text generation. The investigation commences with replicating findings from a previous baseline study, thereby underscoring its susceptibility to variations in the underlying generation model. Subsequently, we propose an innovative watermarking approach and subject it to rigorous evaluation, employing paraphrased generated text to asses its robustness. Experimental results highlight the robustness of our proposal compared to the~\cite{aarson} watermarking method.


LinguaSynth: Heterogeneous Linguistic Signals for News Classification

Deep learning has significantly advanced NLP, but its reliance on large black-box models introduces critical interpretability and computational efficiency concerns. This paper proposes LinguaSynth, a novel text classification framework that strategically integrates five complementary linguistic feature types: lexical, syntactic, entity-level, word-level semantics, and document-level semantics within a transparent logistic regression model. Unlike transformer-based architectures, LinguaSynth maintains interpretability and computational efficiency, achieving an accuracy of 84.89 percent on the 20 Newsgroups dataset and surpassing a robust TF-IDF baseline by 3.32 percent. Through rigorous feature interaction analysis, we show that syntactic and entity-level signals provide essential disambiguation and effectively complement distributional semantics. LinguaSynth sets a new benchmark for interpretable, resource-efficient NLP models and challenges the prevailing assumption that deep neural networks are necessary for high-performing text classification.


The Automated LLM Speedrunning Benchmark: Reproducing NanoGPT Improvements

Rapid advancements in large language models (LLMs) have the potential to assist in scientific progress. A critical capability toward this endeavor is the ability to reproduce existing work. To evaluate the ability of AI agents to reproduce results in an active research area, we introduce the Automated LLM Speedrunning Benchmark, leveraging the research community contributions on the NanoGPT speedrun, a competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun tasks provides the agent with the previous records training script, optionally paired with one of three hint formats, ranging from pseudocode to paper-like descriptions of the new records improvements. Records execute quickly by design and speedrun improvements encompass diverse code-level changes, ranging from high-level algorithmic advancements to hardware-aware optimizations. These features make the benchmark both accessible and realistic for the frontier problem of improving LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds struggle to reimplement already-known innovations in our benchmark, even when given detailed hints. Our benchmark thus provides a simple, non-saturated measure of an LLMs ability to automate scientific reproduction, a necessary (but not sufficient) skill for an autonomous research agent.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.