Daily MT Picks

Subscribe
Archives
June 8, 2025

Machine Translation Digest for Jun 03 2025

Here is today's selection of cs.CL papers exploring various challenges and innovations in machine translation and language model evaluation. The papers focus on diverse topics such as multilingual financial meeting understanding, federated fine-tuning across domains, detecting AI-assisted text generation, efficient reasoning compression, and the complexities of idiom translation in speech-to-text systems.


M$^3$FinMeeting: A Multilingual, Multi-Sector, and Multi-Task Financial Meeting Understanding Evaluation Dataset

Recent breakthroughs in large language models (LLMs) have led to the development of new benchmarks for evaluating their performance in the financial domain. However, current financial benchmarks often rely on news articles, earnings reports, or announcements, making it challenging to capture the real-world dynamics of financial meetings. To address this gap, we propose a novel benchmark called $\texttt{M$^3$FinMeeting}$, which is a multilingual, multi-sector, and multi-task dataset designed for financial meeting understanding. First, $\texttt{M$^3$FinMeeting}$ supports English, Chinese, and Japanese, enhancing comprehension of financial discussions in diverse linguistic contexts. Second, it encompasses various industry sectors defined by the Global Industry Classification Standard (GICS), ensuring that the benchmark spans a broad range of financial activities. Finally, $\texttt{M$^3$FinMeeting}$ includes three tasks: summarization, question-answer (QA) pair extraction, and question answering, facilitating a more realistic and comprehensive evaluation of understanding. Experimental results with seven popular LLMs reveal that even the most advanced long-context models have significant room for improvement, demonstrating the effectiveness of $\texttt{M$^3$FinMeeting}$ as a benchmark for assessing LLMs' financial meeting comprehension skills.


FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models

Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data, raising concerns about data scarcity and the lack of access to domain-specific, sensitive information. Federated Learning (FL) presents a compelling framework to address these challenges by enabling decentralized fine-tuning on pre-trained LLMs without sharing raw data. However, the compatibility and performance of pre-trained LLMs in FL settings remain largely under explored. We introduce the FlowerTune LLM Leaderboard, a first-of-its-kind benchmarking suite designed to evaluate federated fine-tuning of LLMs across four diverse domains: general NLP, finance, medical, and coding. Each domain includes federated instruction-tuning datasets and domain-specific evaluation metrics. Our results, obtained through a collaborative, open-source and community-driven approach, provide the first comprehensive comparison across 26 pre-trained LLMs with different aggregation and fine-tuning strategies under federated settings, offering actionable insights into model performance, resource constraints, and domain adaptation. This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.


HACo-Det: A Study Towards Fine-Grained Machine-Generated Text Detection under Human-AI Coauthoring

The misuse of large language models (LLMs) poses potential risks, motivating the development of machine-generated text (MGT) detection. Existing literature primarily concentrates on binary, document-level detection, thereby neglecting texts that are composed jointly by human and LLM contributions. Hence, this paper explores the possibility of fine-grained MGT detection under human-AI coauthoring. We suggest fine-grained detectors can pave pathways toward coauthored text detection with a numeric AI ratio. Specifically, we propose a dataset, HACo-Det, which produces human-AI coauthored texts via an automatic pipeline with word-level attribution labels. We retrofit seven prevailing document-level detectors to generalize them to word-level detection. Then we evaluate these detectors on HACo-Det on both word- and sentence-level detection tasks. Empirical results show that metric-based methods struggle to conduct fine-grained detection with a 0.462 average F1 score, while finetuned models show superior performance and better generalization across domains. However, we argue that fine-grained co-authored text detection is far from solved. We further analyze factors influencing performance, e.g., context window, and highlight the limitations of current methods, pointing to potential avenues for improvement.


TL;DR: Too Long, Do Re-weighting for Effcient LLM Reasoning Compression

Large Language Models (LLMs) have recently achieved remarkable progress by leveraging Reinforcement Learning and extended Chain-of-Thought (CoT) techniques. However, the challenge of performing efficient language reasoning--especially during inference with extremely long outputs--has drawn increasing attention from the research community. In this work, we propose a dynamic ratio-based training pipeline that does not rely on sophisticated data annotations or interpolation between multiple models. We continuously balance the weights between the model's System-1 and System-2 data to eliminate redundant reasoning processes while preserving the model's reasoning capability. We validate our approach across models on DeepSeek-R1-Distill-7B and DeepSeek-R1-Distill-14B and on a diverse set of benchmarks with varying difficulty levels. Our method significantly reduces the number of output tokens by nearly 40% while maintaining the accuracy of the reasoning. Our code and data will be available soon.


It's Not a Walk in the Park! Challenges of Idiom Translation in Speech-to-text Systems

Idioms are defined as a group of words with a figurative meaning not deducible from their individual components. Although modern machine translation systems have made remarkable progress, translating idioms remains a major challenge, especially for speech-to-text systems, where research on this topic is notably sparse. In this paper, we systematically evaluate idiom translation as compared to conventional news translation in both text-to-text machine translation (MT) and speech-to-text translation (SLT) systems across two language pairs (German to English, Russian to English). We compare state-of-the-art end-to-end SLT systems (SeamlessM4T SLT-to-text, Whisper Large v3) with MT systems (SeamlessM4T SLT-to-text, No Language Left Behind), Large Language Models (DeepSeek, LLaMA) and cascaded alternatives. Our results reveal that SLT systems experience a pronounced performance drop on idiomatic data, often reverting to literal translations even in higher layers, whereas MT systems and Large Language Models demonstrate better handling of idioms. These findings underscore the need for idiom-specific strategies and improved internal representations in SLT architectures.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.