Daily MT Picks

Subscribe
Archives
August 1, 2025

Machine Translation Digest for Jul 27 2025

Here is today's selection of cs.CL papers exploring advancements in natural language processing and machine translation. Common themes include the development of frameworks for low-resource languages and dialect translation, as well as the enhancement of understanding and reasoning in complex linguistic and social contexts.


Survey of NLU Benchmarks Diagnosing Linguistic Phenomena: Why not Standardize Diagnostics Benchmarks?

Natural Language Understanding (NLU) is a basic task in Natural Language Processing (NLP). The evaluation of NLU capabilities has become a trending research topic that attracts researchers in the last few years, resulting in the development of numerous benchmarks. These benchmarks include various tasks and datasets in order to evaluate the results of pretrained models via public leaderboards. Notably, several benchmarks contain diagnostics datasets designed for investigation and fine-grained error analysis across a wide range of linguistic phenomena. This survey provides a comprehensive review of available English, Arabic, and Multilingual NLU benchmarks, with a particular emphasis on their diagnostics datasets and the linguistic phenomena they covered. We present a detailed comparison and analysis of these benchmarks, highlighting their strengths and limitations in evaluating NLU tasks and providing in-depth error analysis. When highlighting the gaps in the state-of-the-art, we noted that there is no naming convention for macro and micro categories or even a standard set of linguistic phenomena that should be covered. Consequently, we formulated a research question regarding the evaluation metrics of the evaluation diagnostics benchmarks: "Why do not we have an evaluation standard for the NLU evaluation diagnostics benchmarks?" similar to ISO standard in industry. We conducted a deep analysis and comparisons of the covered linguistic phenomena in order to support experts in building a global hierarchy for linguistic phenomena in future. We think that having evaluation metrics for diagnostics evaluation could be valuable to gain more insights when comparing the results of the studied models on different diagnostics benchmarks.


AI-Driven Generation of Old English: A Framework for Low-Resource Languages

Preserving ancient languages is essential for understanding humanity's cultural and linguistic heritage, yet Old English remains critically under-resourced, limiting its accessibility to modern natural language processing (NLP) techniques. We present a scalable framework that uses advanced large language models (LLMs) to generate high-quality Old English texts, addressing this gap. Our approach combines parameter-efficient fine-tuning (Low-Rank Adaptation, LoRA), data augmentation via backtranslation, and a dual-agent pipeline that separates the tasks of content generation (in English) and translation (into Old English). Evaluation with automated metrics (BLEU, METEOR, and CHRF) shows significant improvements over baseline models, with BLEU scores increasing from 26 to over 65 for English-to-Old English translation. Expert human assessment also confirms high grammatical accuracy and stylistic fidelity in the generated texts. Beyond expanding the Old English corpus, our method offers a practical blueprint for revitalizing other endangered languages, effectively uniting AI innovation with the goals of cultural preservation.


Multi-Agent Interactive Question Generation Framework for Long Document Understanding

Document Understanding (DU) in long-contextual scenarios with complex layouts remains a significant challenge in vision-language research. Although Large Vision-Language Models (LVLMs) excel at short-context DU tasks, their performance declines in long-context settings. A key limitation is the scarcity of fine-grained training data, particularly for low-resource languages such as Arabic. Existing state-of-the-art techniques rely heavily on human annotation, which is costly and inefficient. We propose a fully automated, multi-agent interactive framework to generate long-context questions efficiently. Our approach efficiently generates high-quality single- and multi-page questions for extensive English and Arabic documents, covering hundreds of pages across diverse domains. This facilitates the development of LVLMs with enhanced long-context understanding ability. Experimental results in this work have shown that our generated English and Arabic questions (\textbf{AraEngLongBench}) are quite challenging to major open- and close-source LVLMs. The code and data proposed in this work can be found in https://github.com/wangk0b/Multi_Agentic_QA_Long_Doc.git. Sample Question and Answer (QA) pairs and structured system prompts can be found in the Appendix.


Advancing Dialectal Arabic to Modern Standard Arabic Machine Translation

Dialectal Arabic (DA) poses a persistent challenge for natural language processing (NLP), as most everyday communication in the Arab world occurs in dialects that diverge significantly from Modern Standard Arabic (MSA). This linguistic divide limits access to digital services and educational resources and impedes progress in Arabic machine translation. This paper presents two core contributions to advancing DA-MSA translation for the Levantine, Egyptian, and Gulf dialects, particularly in low-resource and computationally constrained settings: a comprehensive evaluation of training-free prompting techniques, and the development of a resource-efficient fine-tuning pipeline. Our evaluation of prompting strategies across six large language models (LLMs) found that few-shot prompting consistently outperformed zero-shot, chain-of-thought, and our proposed Ara-TEaR method. GPT-4o achieved the highest performance across all prompting settings. For fine-tuning, a quantized Gemma2-9B model achieved a CHrF++ score of 49.88, outperforming zero-shot GPT-4o (44.58). Joint multi-dialect trained models outperformed single-dialect counterparts by over 10% CHrF++, and 4-bit quantization reduced memory usage by 60% with less than 1% performance loss. The results and insights of our experiments offer a practical blueprint for improving dialectal inclusion in Arabic NLP, showing that high-quality DA-MSA machine translation is achievable even with limited resources and paving the way for more inclusive language technologies.


Cognitive Chain-of-Thought: Structured Multimodal Reasoning about Social Situations

Chain-of-Thought (CoT) prompting helps models think step by step. But what happens when they must see, understand, and judge-all at once? In visual tasks grounded in social context, where bridging perception with norm-grounded judgments is essential, flat CoT often breaks down. We introduce Cognitive Chain-of-Thought (CoCoT), a prompting strategy that scaffolds VLM reasoning through three cognitively inspired stages: perception, situation, and norm. Our experiments show that, across multiple multimodal benchmarks (including intent disambiguation, commonsense reasoning, and safety), CoCoT consistently outperforms CoT and direct prompting (+8\% on average). Our findings demonstrate that cognitively grounded reasoning stages enhance interpretability and social awareness in VLMs, paving the way for safer and more reliable multimodal systems.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.