Daily MT Picks

Subscribe
Archives
July 31, 2025

Machine Translation Digest for Jul 26 2025

Here is today's selection of cs.CL papers in the realm of machine translation and multilingual processing. The featured research highlights advancements in generative AI's zero-shot capabilities, the development of novel datasets for specialized domains, and innovative techniques for improving language models' reasoning and inference abilities.


Zero-shot Performance of Generative AI in Brazilian Portuguese Medical Exam

Artificial intelligence (AI) has shown the potential to revolutionize healthcare by improving diagnostic accuracy, optimizing workflows, and personalizing treatment plans. Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have achieved notable advancements in natural language processing and medical applications. However, the evaluation of these models has focused predominantly on the English language, leading to potential biases in their performance across different languages. This study investigates the capability of six LLMs (GPT-4.0 Turbo, LLaMA-3-8B, LLaMA-3-70B, Mixtral 8x7B Instruct, Titan Text G1-Express, and Command R+) and four MLLMs (Claude-3.5-Sonnet, Claude-3-Opus, Claude-3-Sonnet, and Claude-3-Haiku) to answer questions written in Brazilian spoken portuguese from the medical residency entrance exam of the Hospital das Cl\'inicas da Faculdade de Medicina da Universidade de S~ao Paulo (HCFMUSP) - the largest health complex in South America. The performance of the models was benchmarked against human candidates, analyzing accuracy, processing time, and coherence of the generated explanations. The results show that while some models, particularly Claude-3.5-Sonnet and Claude-3-Opus, achieved accuracy levels comparable to human candidates, performance gaps persist, particularly in multimodal questions requiring image interpretation. Furthermore, the study highlights language disparities, emphasizing the need for further fine-tuning and data set augmentation for non-English medical AI applications. Our findings reinforce the importance of evaluating generative AI in various linguistic and clinical settings to ensure a fair and reliable deployment in healthcare. Future research should explore improved training methodologies, improved multimodal reasoning, and real-world clinical integration of AI-driven medical assistance.


VLQA: The First Comprehensive, Large, and High-Quality Vietnamese Dataset for Legal Question Answering

The advent of large language models (LLMs) has led to significant achievements in various domains, including legal text processing. Leveraging LLMs for legal tasks is a natural evolution and an increasingly compelling choice. However, their capabilities are often portrayed as greater than they truly are. Despite the progress, we are still far from the ultimate goal of fully automating legal tasks using artificial intelligence (AI) and natural language processing (NLP). Moreover, legal systems are deeply domain-specific and exhibit substantial variation across different countries and languages. The need for building legal text processing applications for different natural languages is, therefore, large and urgent. However, there is a big challenge for legal NLP in low-resource languages such as Vietnamese due to the scarcity of resources and annotated data. The need for labeled legal corpora for supervised training, validation, and supervised fine-tuning is critical. In this paper, we introduce the VLQA dataset, a comprehensive and high-quality resource tailored for the Vietnamese legal domain. We also conduct a comprehensive statistical analysis of the dataset and evaluate its effectiveness through experiments with state-of-the-art models on legal information retrieval and question-answering tasks.


Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text

Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.


UloRL:An Ultra-Long Output Reinforcement Learning Approach for Advancing Large Language Models' Reasoning Abilities

Recent advances in large language models (LLMs) have highlighted the potential of reinforcement learning with verifiable rewards (RLVR) to enhance reasoning capabilities through extended output sequences. However, traditional RL frameworks face inefficiencies when handling ultra-long outputs due to long-tail sequence distributions and entropy collapse during training. To address these challenges, we propose an Ultra-Long Output Reinforcement Learning (UloRL) approach for advancing large language models' reasoning abilities. Specifically, we divide ultra long output decoding into short segments, enabling efficient training by mitigating delays caused by long-tail samples. Additionally, we introduce dynamic masking of well-Mastered Positive Tokens (MPTs) to prevent entropy collapse. Experimental results demonstrate the effectiveness of our approach. On the Qwen3-30B-A3B model, RL with segment rollout achieved 2.06x increase in training speed, while RL training with 128k-token outputs improves the model's performance on AIME2025 from 70.9\% to 85.1\% and on BeyondAIME from 50.7\% to 61.9\%, even surpassing Qwen3-235B-A22B with remarkable gains. These findings underscore the potential of our methods to advance the reasoning capabilities of LLMs with ultra-long sequence generation. We will release our code and model for further use by the community.


PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training

Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.