Daily MT Picks

Subscribe
Archives
July 29, 2025

Machine Translation Digest for Jul 24 2025

Here is today's selection of cs.CL papers. The common theme across these works is the enhancement of machine learning models through innovative approaches, such as integrating logic and self-inspection, leveraging graph-guided inductive methods, and utilizing checklists for model alignment. These methods aim to improve model performance and robustness in applications like data synthesis, multimodal translation, and poisoned document detection.


AQuilt: Weaving Logic and Self-Inspection into Low-Cost, High-Relevance Data Synthesis for Specialist LLMs

Despite the impressive performance of large language models (LLMs) in general domains, they often underperform in specialized domains. Existing approaches typically rely on data synthesis methods and yield promising results by using unlabeled data to capture domain-specific features. However, these methods either incur high computational costs or suffer from performance limitations, while also demonstrating insufficient generalization across different tasks. To address these challenges, we propose AQuilt, a framework for constructing instruction-tuning data for any specialized domains from corresponding unlabeled data, including Answer, Question, Unlabeled data, Inspection, Logic, and Task type. By incorporating logic and inspection, we encourage reasoning processes and self-inspection to enhance model performance. Moreover, customizable task instructions enable high-quality data generation for any task. As a result, we construct a dataset of 703k examples to train a powerful data synthesis model. Experiments show that AQuilt is comparable to DeepSeek-V3 while utilizing just 17% of the production cost. Further analysis demonstrates that our generated data exhibits higher relevance to downstream tasks. Source code, models, and scripts are available at https://github.com/Krueske/AQuilt.


GIIFT: Graph-guided Inductive Image-free Multimodal Machine Translation

Multimodal Machine Translation (MMT) has demonstrated the significant help of visual information in machine translation. However, existing MMT methods face challenges in leveraging the modality gap by enforcing rigid visual-linguistic alignment whilst being confined to inference within their trained multimodal domains. In this work, we construct novel multimodal scene graphs to preserve and integrate modality-specific information and introduce GIIFT, a two-stage Graph-guided Inductive Image-Free MMT framework that uses a cross-modal Graph Attention Network adapter to learn multimodal knowledge in a unified fused space and inductively generalize it to broader image-free translation domains. Experimental results on the Multi30K dataset of English-to-French and English-to-German tasks demonstrate that our GIIFT surpasses existing approaches and achieves the state-of-the-art, even without images during inference. Results on the WMT benchmark show significant improvements over the image-free translation baselines, demonstrating the strength of GIIFT towards inductive image-free inference.


Recent Trends in Distant Conversational Speech Recognition: A Review of CHiME-7 and 8 DASR Challenges

The CHiME-7 and 8 distant speech recognition (DASR) challenges focus on multi-channel, generalizable, joint automatic speech recognition (ASR) and diarization of conversational speech. With participation from 9 teams submitting 32 diverse systems, these challenges have contributed to state-of-the-art research in the field. This paper outlines the challenges' design, evaluation metrics, datasets, and baseline systems while analyzing key trends from participant submissions. From this analysis it emerges that: 1) Most participants use end-to-end (e2e) ASR systems, whereas hybrid systems were prevalent in previous CHiME challenges. This transition is mainly due to the availability of robust large-scale pre-trained models, which lowers the data burden for e2e-ASR. 2) Despite recent advances in neural speech separation and enhancement (SSE), all teams still heavily rely on guided source separation, suggesting that current neural SSE techniques are still unable to reliably deal with complex scenarios and different recording setups. 3) All best systems employ diarization refinement via target-speaker diarization techniques. Accurate speaker counting in the first diarization pass is thus crucial to avoid compounding errors and CHiME-8 DASR participants especially focused on this part. 4) Downstream evaluation via meeting summarization can correlate weakly with transcription quality due to the remarkable effectiveness of large-language models in handling errors. On the NOTSOFAR-1 scenario, even systems with over 50\% time-constrained minimum permutation WER can perform roughly on par with the most effective ones (around 11\%). 5) Despite recent progress, accurately transcribing spontaneous speech in challenging acoustic environments remains difficult, even when using computationally intensive system ensembles.


Safeguarding RAG Pipelines with GMTP: A Gradient-based Masked Token Probability Method for Poisoned Document Detection

Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by providing external knowledge for accurate and up-to-date responses. However, this reliance on external sources exposes a security risk, attackers can inject poisoned documents into the knowledge base to steer the generation process toward harmful or misleading outputs. In this paper, we propose Gradient-based Masked Token Probability (GMTP), a novel defense method to detect and filter out adversarially crafted documents. Specifically, GMTP identifies high-impact tokens by examining gradients of the retriever's similarity function. These key tokens are then masked, and their probabilities are checked via a Masked Language Model (MLM). Since injected tokens typically exhibit markedly low masked-token probabilities, this enables GMTP to easily detect malicious documents and achieve high-precision filtering. Experiments demonstrate that GMTP is able to eliminate over 90% of poisoned content while retaining relevant documents, thus maintaining robust retrieval and generation performance across diverse datasets and adversarial settings.


Checklists Are Better Than Reward Models For Aligning Language Models

Language models must be adapted to understand and follow user instructions. Reinforcement learning is widely used to facilitate this -- typically using fixed criteria such as "helpfulness" and "harmfulness". In our work, we instead propose using flexible, instruction-specific criteria as a means of broadening the impact that reinforcement learning can have in eliciting instruction following. We propose "Reinforcement Learning from Checklist Feedback" (RLCF). From instructions, we extract checklists and evaluate how well responses satisfy each item - using both AI judges and specialized verifier programs - then combine these scores to compute rewards for RL. We compare RLCF with other alignment methods applied to a strong instruction following model (Qwen2.5-7B-Instruct) on five widely-studied benchmarks -- RLCF is the only method to improve performance on every benchmark, including a 4-point boost in hard satisfaction rate on FollowBench, a 6-point increase on InFoBench, and a 3-point rise in win rate on Arena-Hard. These results establish checklist feedback as a key tool for improving language models' support of queries that express a multitude of needs.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.