Daily MT Picks

Subscribe
Archives
July 28, 2025

Machine Translation Digest for Jul 23 2025

Here is today's selection of cs.CL papers focusing on the advancements in machine translation and multilingual systems. The papers explore innovative methods for enhancing translation across different modalities, such as dual-branch prompting for multimodal translation and a multilingual speech recognition system. Additionally, they highlight the ongoing development of natural language processing tools for underrepresented languages like Tigrinya.


Natural Language Processing for Tigrinya: Current State and Future Directions

Despite being spoken by millions of people, Tigrinya remains severely underrepresented in Natural Language Processing (NLP) research. This work presents a comprehensive survey of NLP research for Tigrinya, analyzing over 40 studies spanning more than a decade of work from 2011 to 2025. We systematically review the current state of computational resources, models, and applications across ten distinct downstream tasks, including morphological processing, machine translation, speech recognition, and question-answering. Our analysis reveals a clear trajectory from foundational, rule-based systems to modern neural architectures, with progress consistently unlocked by resource creation milestones. We identify key challenges rooted in Tigrinya's morphological complexity and resource scarcity, while highlighting promising research directions, including morphology-aware modeling, cross-lingual transfer, and community-centered resource development. This work serves as both a comprehensive reference for researchers and a roadmap for advancing Tigrinya NLP. A curated metadata of the surveyed studies and resources is made publicly available.


Dual-branch Prompting for Multimodal Machine Translation

Multimodal Machine Translation (MMT) typically enhances text-only translation by incorporating aligned visual features. Despite the remarkable progress, state-of-the-art MMT approaches often rely on paired image-text inputs at inference and are sensitive to irrelevant visual noise, which limits their robustness and practical applicability. To address these issues, we propose D2P-MMT, a diffusion-based dual-branch prompting framework for robust vision-guided translation. Specifically, D2P-MMT requires only the source text and a reconstructed image generated by a pre-trained diffusion model, which naturally filters out distracting visual details while preserving semantic cues. During training, the model jointly learns from both authentic and reconstructed images using a dual-branch prompting strategy, encouraging rich cross-modal interactions. To bridge the modality gap and mitigate training-inference discrepancies, we introduce a distributional alignment loss that enforces consistency between the output distributions of the two branches. Extensive experiments on the Multi30K dataset demonstrate that D2P-MMT achieves superior translation performance compared to existing state-of-the-art approaches.


Triple X: A LLM-Based Multilingual Speech Recognition System for the INTERSPEECH2025 MLC-SLM Challenge

This paper describes our Triple X speech recognition system submitted to Task 1 of the Multi-Lingual Conversational Speech Language Modeling (MLC-SLM) Challenge. Our work focuses on optimizing speech recognition accuracy in multilingual conversational scenarios through an innovative encoder-adapter-LLM architecture. This framework harnesses the powerful reasoning capabilities of text-based large language models while incorporating domain-specific adaptations. To further enhance multilingual recognition performance, we adopted a meticulously designed multi-stage training strategy leveraging extensive multilingual audio datasets. Experimental results demonstrate that our approach achieves competitive Word Error Rate (WER) performance on both dev and test sets, obtaining second place in the challenge ranking.


Evaluating the Performance of AI Text Detectors, Few-Shot and Chain-of-Thought Prompting Using DeepSeek Generated Text

Large language models (LLMs) have rapidly transformed the creation of written materials. LLMs have led to questions about writing integrity, thereby driving the creation of artificial intelligence (AI) detection technologies. Adversarial attacks, such as standard and humanized paraphrasing, inhibit detectors' ability to detect machine-generated text. Previous studies have mainly focused on ChatGPT and other well-known LLMs and have shown varying accuracy across detectors. However, there is a clear gap in the literature about DeepSeek, a recently published LLM. Therefore, in this work, we investigate whether six generally accessible AI detection tools -- AI Text Classifier, Content Detector AI, Copyleaks, QuillBot, GPT-2, and GPTZero -- can consistently recognize text generated by DeepSeek. The detectors were exposed to the aforementioned adversarial attacks. We also considered DeepSeek as a detector by performing few-shot prompting and chain-of-thought reasoning (CoT) for classifying AI and human-written text. We collected 49 human-authored question-answer pairs from before the LLM era and generated matching responses using DeepSeek-v3, producing 49 AI-generated samples. Then, we applied adversarial techniques such as paraphrasing and humanizing to add 196 more samples. These were used to challenge detector robustness and assess accuracy impact. While QuillBot and Copyleaks showed near-perfect performance on original and paraphrased DeepSeek text, others -- particularly AI Text Classifier and GPT-2 -- showed inconsistent results. The most effective attack was humanization, reducing accuracy to 71% for Copyleaks, 58% for QuillBot, and 52% for GPTZero. Few-shot and CoT prompting showed high accuracy, with the best five-shot result misclassifying only one of 49 samples (AI recall 96%, human recall 100%).


A Highly Clean Recipe Dataset with Ingredient States Annotation for State Probing Task

Large Language Models (LLMs) are trained on a vast amount of procedural texts, but they do not directly observe real-world phenomena. In the context of cooking recipes, this poses a challenge, as intermediate states of ingredients are often omitted, making it difficult for models to track ingredient states and understand recipes accurately. In this paper, we apply state probing, a method for evaluating a language model's understanding of the world, to the domain of cooking. We propose a new task and dataset for evaluating how well LLMs can recognize intermediate ingredient states during cooking procedures. We first construct a new Japanese recipe dataset with clear and accurate annotations of ingredient state changes, collected from well-structured and controlled recipe texts. Using this dataset, we design three novel tasks to evaluate whether LLMs can track ingredient state transitions and identify ingredients present at intermediate steps. Our experiments with widely used LLMs, such as Llama3.1-70B and Qwen2.5-72B, show that learning ingredient state knowledge improves their understanding of cooking processes, achieving performance comparable to commercial LLMs.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.