Daily MT Picks

Subscribe
Archives
July 23, 2025

Machine Translation Digest for Jul 18 2025

Here is today's selection of cs.CL papers exploring advancements in language model applications. The papers delve into the enhancement of multilingual translation capabilities, the alignment of language models with low-resource languages, and the evaluation of large language models in biomedical contexts.


NoHumansRequired: Autonomous High-Quality Image Editing Triplet Mining

Recent advances in generative modeling enable image editing assistants that follow natural language instructions without additional user input. Their supervised training requires millions of triplets: original image, instruction, edited image. Yet mining pixel-accurate examples is hard. Each edit must affect only prompt-specified regions, preserve stylistic coherence, respect physical plausibility, and retain visual appeal. The lack of robust automated edit-quality metrics hinders reliable automation at scale. We present an automated, modular pipeline that mines high-fidelity triplets across domains, resolutions, instruction complexities, and styles. Built on public generative models and running without human intervention, our system uses a task-tuned Gemini validator to score instruction adherence and aesthetics directly, removing any need for segmentation or grounding models. Inversion and compositional bootstrapping enlarge the mined set by approximately 2.2x, enabling large-scale high-fidelity training data. By automating the most repetitive annotation steps, the approach allows a new scale of training without human labeling effort. To democratize research in this resource-intensive area, we release NHR-Edit: an open dataset of 358k high-quality triplets. In the largest cross-dataset evaluation, it surpasses all public alternatives. We also release Bagel-NHR-Edit, an open-source fine-tuned Bagel model, which achieves state-of-the-art metrics in our experiments.


Evaluating the Effectiveness of Cost-Efficient Large Language Models in Benchmark Biomedical Tasks

This paper presents a comprehensive evaluation of cost-efficient Large Language Models (LLMs) for diverse biomedical tasks spanning both text and image modalities. We evaluated a range of closed-source and open-source LLMs on tasks such as biomedical text classification and generation, question answering, and multimodal image processing. Our experimental findings indicate that there is no single LLM that can consistently outperform others across all tasks. Instead, different LLMs excel in different tasks. While some closed-source LLMs demonstrate strong performance on specific tasks, their open-source counterparts achieve comparable results (sometimes even better), with additional benefits like faster inference and enhanced privacy. Our experimental results offer valuable insights for selecting models that are optimally suited for specific biomedical applications.


Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters

Multilingual translation stands as a challenging task for large language models (LLMs) to handle intricate language patterns and stilted translations that arise in automated translations. In this paper, we introduce Seed-X, a family of open-source LLMs comprising instruct and reasoning models, pushing the limits of translation capability with 7B parameter size. The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages, harnessing the full potential of multilingual data. The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs. Seed-X achieves performance comparable to leading closed-source models, including Gemini-2.5 and GPT-4o, across 28 languages, and significantly outperforms larger open-source models in both automatic metrics and human evaluations. We share the best practices through our optimization process, and make the parameter public available for advancing translation research and applications.


Aligning Large Language Models to Low-Resource Languages through LLM-Based Selective Translation: A Systematic Study

Multilingual large language models (LLMs) often demonstrate a performance gap between English and non-English languages, particularly in low-resource settings. Aligning these models to low-resource languages is essential yet challenging due to limited high-quality data. While English alignment datasets are readily available, curating equivalent data in other languages is expensive and time-consuming. A common workaround is to translate existing English alignment data; however, standard translation techniques often fail to preserve critical elements such as code, mathematical expressions, and structured formats like JSON. In this work, we investigate LLM-based selective translation, a technique that selectively translates only the translatable parts of a text while preserving non-translatable content and sentence structure. We conduct a systematic study to explore key questions around this approach, including its effectiveness compared to vanilla translation, the importance of filtering noisy outputs, and the benefits of mixing translated samples with original English data during alignment. Our experiments focus on the low-resource Indic language Hindi and compare translations generated by Google Cloud Translation (GCP) and Llama-3.1-405B. The results highlight the promise of selective translation as a practical and effective method for improving multilingual alignment in LLMs.


Lessons from the TREC Plain Language Adaptation of Biomedical Abstracts (PLABA) track

Objective: Recent advances in language models have shown potential to adapt professional-facing biomedical literature to plain language, making it accessible to patients and caregivers. However, their unpredictability, combined with the high potential for harm in this domain, means rigorous evaluation is necessary. Our goals with this track were to stimulate research and to provide high-quality evaluation of the most promising systems. Methods: We hosted the Plain Language Adaptation of Biomedical Abstracts (PLABA) track at the 2023 and 2024 Text Retrieval Conferences. Tasks included complete, sentence-level, rewriting of abstracts (Task 1) as well as identifying and replacing difficult terms (Task 2). For automatic evaluation of Task 1, we developed a four-fold set of professionally-written references. Submissions for both Tasks 1 and 2 were provided extensive manual evaluation from biomedical experts. Results: Twelve teams spanning twelve countries participated in the track, with models from multilayer perceptrons to large pretrained transformers. In manual judgments of Task 1, top-performing models rivaled human levels of factual accuracy and completeness, but not simplicity or brevity. Automatic, reference-based metrics generally did not correlate well with manual judgments. In Task 2, systems struggled with identifying difficult terms and classifying how to replace them. When generating replacements, however, LLM-based systems did well in manually judged accuracy, completeness, and simplicity, though not in brevity. Conclusion: The PLABA track showed promise for using Large Language Models to adapt biomedical literature for the general public, while also highlighting their deficiencies and the need for improved automatic benchmarking tools.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.