Daily MT Picks

Subscribe
Archives
July 22, 2025

Machine Translation Digest for Jul 17 2025

Here is today's selection of cs.CL papers focusing on advancements in machine learning and evaluation techniques. The papers explore diverse applications, from improving table data recovery and evaluating translations to innovations in electronic health record modeling and AI agent evaluation. They collectively highlight the integration of large language models and novel evaluation strategies across various domains.


MRT at IberLEF-2025 PRESTA Task: Maximizing Recovery from Tables with Multiple Steps

This paper presents our approach for the IberLEF 2025 Task PRESTA: Preguntas y Respuestas sobre Tablas en Espa~nol (Questions and Answers about Tables in Spanish). Our solution obtains answers to the questions by implementing Python code generation with LLMs that is used to filter and process the table. This solution evolves from the MRT implementation for the Semeval 2025 related task. The process consists of multiple steps: analyzing and understanding the content of the table, selecting the useful columns, generating instructions in natural language, translating these instructions to code, running it, and handling potential errors or exceptions. These steps use open-source LLMs and fine-grained optimized prompts for each step. With this approach, we achieved an accuracy score of 85\% in the task.


A Comprehensive Survey of Electronic Health Record Modeling: From Deep Learning Approaches to Large Language Models

Artificial intelligence (AI) has demonstrated significant potential in transforming healthcare through the analysis and modeling of electronic health records (EHRs). However, the inherent heterogeneity, temporal irregularity, and domain-specific nature of EHR data present unique challenges that differ fundamentally from those in vision and natural language tasks. This survey offers a comprehensive overview of recent advancements at the intersection of deep learning, large language models (LLMs), and EHR modeling. We introduce a unified taxonomy that spans five key design dimensions: data-centric approaches, neural architecture design, learning-focused strategies, multimodal learning, and LLM-based modeling systems. Within each dimension, we review representative methods addressing data quality enhancement, structural and temporal representation, self-supervised learning, and integration with clinical knowledge. We further highlight emerging trends such as foundation models, LLM-driven clinical agents, and EHR-to-text translation for downstream reasoning. Finally, we discuss open challenges in benchmarking, explainability, clinical alignment, and generalization across diverse clinical settings. This survey aims to provide a structured roadmap for advancing AI-driven EHR modeling and clinical decision support. For a comprehensive list of EHR-related methods, kindly refer to https://survey-on-tabular-data.github.io/.


TransEvalnia: Reasoning-based Evaluation and Ranking of Translations

We present TransEvalnia, a prompting-based translation evaluation and ranking system that uses reasoning in performing its evaluations and ranking. This system presents fine-grained evaluations based on a subset of the Multidimensional Quality Metrics (https://themqm.org/), returns an assessment of which translation it deems the best, and provides numerical scores for the various dimensions and for the overall translation. We show that TransEvalnia performs as well as or better than the state-of-the-art MT-Ranker (Moosa et al. 2024) on our own English-Japanese data as well as several language pairs from various WMT shared tasks. Using Anthropic's Claude-3.5-Sonnet and Qwen-2.5-72B-Instruct as the evaluation LLMs, we show that the evaluations returned are deemed highly acceptable to human raters, and that the scores assigned to the translations by Sonnet, as well as other LLMs, correlate well with scores assigned by the human raters. We also note the sensitivity of our system -- as well as MT-Ranker -- to the order in which the translations are presented, and we propose methods to address this position bias. All data, including the system's evaluation and reasoning, human assessments, as well as code is released.


MCPEval: Automatic MCP-based Deep Evaluation for AI Agent Models

The rapid rise of Large Language Models (LLMs)-based intelligent agents underscores the need for robust, scalable evaluation frameworks. Existing methods rely on static benchmarks and labor-intensive data collection, limiting practical assessment. We introduce \oursystemname, an open-source Model Context Protocol (MCP)-based framework that automates end-to-end task generation and deep evaluation of LLM agents across diverse domains. MCPEval standardizes metrics, seamlessly integrates with native agent tools, and eliminates manual effort in building evaluation pipelines. Empirical results across five real-world domains show its effectiveness in revealing nuanced, domain-specific performance. We publicly release MCPEval https://github.com/SalesforceAIResearch/MCPEval to promote reproducible and standardized LLM agent evaluation.


Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities

In the era of Large Language Models (LLMs), alignment has emerged as a fundamental yet challenging problem in the pursuit of more reliable, controllable, and capable machine intelligence. The recent success of reasoning models and conversational AI systems has underscored the critical role of reinforcement learning (RL) in enhancing these systems, driving increased research interest at the intersection of RL and LLM alignment. This paper provides a comprehensive review of recent advances in LLM alignment through the lens of inverse reinforcement learning (IRL), emphasizing the distinctions between RL techniques employed in LLM alignment and those in conventional RL tasks. In particular, we highlight the necessity of constructing neural reward models from human data and discuss the formal and practical implications of this paradigm shift. We begin by introducing fundamental concepts in RL to provide a foundation for readers unfamiliar with the field. We then examine recent advances in this research agenda, discussing key challenges and opportunities in conducting IRL for LLM alignment. Beyond methodological considerations, we explore practical aspects, including datasets, benchmarks, evaluation metrics, infrastructure, and computationally efficient training and inference techniques. Finally, we draw insights from the literature on sparse-reward RL to identify open questions and potential research directions. By synthesizing findings from diverse studies, we aim to provide a structured and critical overview of the field, highlight unresolved challenges, and outline promising future directions for improving LLM alignment through RL and IRL techniques.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.