Daily MT Picks

Subscribe
Archives
July 17, 2025

Machine Translation Digest for Jul 12 2025

Here is today's selection of cs.CL papers exploring advancements in machine translation and large language models. The papers focus on enhancing translation with psychological insights, improving model trust and confidence in clinical settings, and leveraging large language models for debate and deception detection. These studies highlight the intersection of language processing with psychology, healthcare, and diplomacy.


Psychology-Driven Enhancement of Humour Translation

Humour translation plays a vital role as a bridge between different cultures, fostering understanding and communication. Although most existing Large Language Models (LLMs) are capable of general translation tasks, these models still struggle with humour translation, which is especially reflected through linguistic interference and lacking humour in translated text. In this paper, we propose a psychology-inspired Humour Decomposition Mechanism (HDM) that utilises Chain-of-Thought (CoT) to imitate the ability of the human thought process, stimulating LLMs to optimise the readability of translated humorous texts. Moreover, we integrate humour theory in HDM to further enhance the humorous elements in the translated text. Our automatic evaluation experiments on open-source humour datasets demonstrate that our method significantly improves the quality of humour translation, yielding average gains of 7.75\% in humour, 2.81\% in fluency, and 6.13\% in coherence of the generated text.


DS@GT at Touché: Large Language Models for Retrieval-Augmented Debate

Large Language Models (LLMs) demonstrate strong conversational abilities. In this Working Paper, we study them in the context of debating in two ways: their ability to perform in a structured debate along with a dataset of arguments to use and their ability to evaluate utterances throughout the debate. We deploy six leading publicly available models from three providers for the Retrieval-Augmented Debate and Evaluation. The evaluation is performed by measuring four key metrics: Quality, Quantity, Manner, and Relation. Throughout this task, we found that although LLMs perform well in debates when given related arguments, they tend to be verbose in responses yet consistent in evaluation. The accompanying source code for this paper is located at https://github.com/dsgt-arc/touche-2025-rad.


Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models

Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.


DATE-LM: Benchmarking Data Attribution Evaluation for Large Language Models

Data attribution methods quantify the influence of training data on model outputs and are becoming increasingly relevant for a wide range of LLM research and applications, including dataset curation, model interpretability, data valuation. However, there remain critical gaps in systematic LLM-centric evaluation of data attribution methods. To this end, we introduce DATE-LM (Data Attribution Evaluation in Language Models), a unified benchmark for evaluating data attribution methods through real-world LLM applications. DATE-LM measures attribution quality through three key tasks -- training data selection, toxicity/bias filtering, and factual attribution. Our benchmark is designed for ease of use, enabling researchers to configure and run large-scale evaluations across diverse tasks and LLM architectures. Furthermore, we use DATE-LM to conduct a large-scale evaluation of existing data attribution methods. Our findings show that no single method dominates across all tasks, data attribution methods have trade-offs with simpler baselines, and method performance is sensitive to task-specific evaluation design. Finally, we release a public leaderboard for quick comparison of methods and to facilitate community engagement. We hope DATE-LM serves as a foundation for future data attribution research in LLMs.


PU-Lie: Lightweight Deception Detection in Imbalanced Diplomatic Dialogues via Positive-Unlabeled Learning

Detecting deception in strategic dialogues is a complex and high-stakes task due to the subtlety of language and extreme class imbalance between deceptive and truthful communications. In this work, we revisit deception detection in the Diplomacy dataset, where less than 5% of messages are labeled deceptive. We introduce a lightweight yet effective model combining frozen BERT embeddings, interpretable linguistic and game-specific features, and a Positive-Unlabeled (PU) learning objective. Unlike traditional binary classifiers, PU-Lie is tailored for situations where only a small portion of deceptive messages are labeled, and the majority are unlabeled. Our model achieves a new best macro F1 of 0.60 while reducing trainable parameters by over 650x. Through comprehensive evaluations and ablation studies across seven models, we demonstrate the value of PU learning, linguistic interpretability, and speaker-aware representations. Notably, we emphasize that in this problem setting, accurately detecting deception is more critical than identifying truthful messages. This priority guides our choice of PU learning, which explicitly models the rare but vital deceptive class.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.