Daily MT Picks

Subscribe
Archives
July 7, 2025

Machine Translation Digest for Jul 02 2025

Here is today's selection of cs.CL papers exploring advancements in multilingual and low-resource language processing. The featured studies investigate language model adaptability and transferability across diverse linguistic contexts, including Indonesian local languages and Bangla, while also addressing evaluation metrics and data selection strategies for large language model pretraining.


Adapting Language Models to Indonesian Local Languages: An Empirical Study of Language Transferability on Zero-Shot Settings

In this paper, we investigate the transferability of pre-trained language models to low-resource Indonesian local languages through the task of sentiment analysis. We evaluate both zero-shot performance and adapter-based transfer on ten local languages using models of different types: a monolingual Indonesian BERT, multilingual models such as mBERT and XLM-R, and a modular adapter-based approach called MAD-X. To better understand model behavior, we group the target languages into three categories: seen (included during pre-training), partially seen (not included but linguistically related to seen languages), and unseen (absent and unrelated in pre-training data). Our results reveal clear performance disparities across these groups: multilingual models perform best on seen languages, moderately on partially seen ones, and poorly on unseen languages. We find that MAD-X significantly improves performance, especially for seen and partially seen languages, without requiring labeled data in the target language. Additionally, we conduct a further analysis on tokenization and show that while subword fragmentation and vocabulary overlap with Indonesian correlate weakly with prediction quality, they do not fully explain the observed performance. Instead, the most consistent predictor of transfer success is the model's prior exposure to the language, either directly or through a related language.


Adaptability of ASR Models on Low-Resource Language: A Comparative Study of Whisper and Wav2Vec-BERT on Bangla

In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.


Confidence and Stability of Global and Pairwise Scores in NLP Evaluation

With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.


MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining

Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.


LLMs for Legal Subsumption in German Employment Contracts

Legal work, characterized by its text-heavy and resource-intensive nature, presents unique challenges and opportunities for NLP research. While data-driven approaches have advanced the field, their lack of interpretability and trustworthiness limits their applicability in dynamic legal environments. To address these issues, we collaborated with legal experts to extend an existing dataset and explored the use of Large Language Models (LLMs) and in-context learning to evaluate the legality of clauses in German employment contracts. Our work evaluates the ability of different LLMs to classify clauses as "valid," "unfair," or "void" under three legal context variants: no legal context, full-text sources of laws and court rulings, and distilled versions of these (referred to as examination guidelines). Results show that full-text sources moderately improve performance, while examination guidelines significantly enhance recall for void clauses and weighted F1-Score, reaching 80\%. Despite these advancements, LLMs' performance when using full-text sources remains substantially below that of human lawyers. We contribute an extended dataset, including examination guidelines, referenced legal sources, and corresponding annotations, alongside our code and all log files. Our findings highlight the potential of LLMs to assist lawyers in contract legality review while also underscoring the limitations of the methods presented.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.