Machine Translation Digest for Jul 01 2025
Here is today's selection of cs.CL papers exploring innovative strategies and evaluations in machine translation and language models. A common theme is the enhancement of model performance and reliability, focusing on low-resource tasks, translation verifiability, and addressing hallucinations in vision-language models. Additionally, the papers highlight the importance of robust benchmarking and evaluation in ensuring the effectiveness of these models.
Transferable Modeling Strategies for Low-Resource LLM Tasks: A Prompt and Alignment-Based Approach
This paper addresses the limited transfer and adaptation capabilities of large language models in low-resource language scenarios. It proposes a unified framework that combines a knowledge transfer module with parameter-efficient fine-tuning strategies. The method introduces knowledge alignment loss and soft prompt tuning to guide the model in effectively absorbing the structural features of target languages or tasks under minimal annotation. This enhances both generalization performance and training stability. The framework includes lightweight adaptation modules to reduce computational costs. During training, it integrates freezing strategies and prompt injection to preserve the model's original knowledge while enabling quick adaptation to new tasks. The study also conducts stability analysis experiments and synthetic pseudo-data transfer experiments to systematically evaluate the method's applicability and robustness across different low-resource tasks. Experimental results show that compared with existing multilingual pre-trained models and mainstream transfer methods, the proposed approach achieves higher performance and stability on cross-lingual tasks such as MLQA, XQuAD, and PAWS-X. It demonstrates particularly strong advantages under extremely data-scarce conditions. The proposed method offers strong generality and scalability. It enhances task-specific adaptability while preserving the general capabilities of large language models. This makes it well-suited for complex semantic modeling and multilingual processing tasks.
Verifiable Natural Language to Linear Temporal Logic Translation: A Benchmark Dataset and Evaluation Suite
Empirical evaluation of state-of-the-art natural-language (NL) to temporal-logic (TL) translation systems reveals near-perfect performance on existing benchmarks. However, current studies measure only the accuracy of the translation of NL logic into formal TL, ignoring a system's capacity to ground atomic propositions into new scenarios or environments. This is a critical feature, necessary for the verification of resulting formulas in a concrete state space. Consequently, most NL-to-TL translation frameworks propose their own bespoke dataset in which the correct grounding is known a-priori, inflating performance metrics and neglecting the need for extensible, domain-general systems. In this paper, we introduce the Verifiable Linear Temporal Logic Benchmark ( VLTL-Bench), a unifying benchmark that measures verification and verifiability of automated NL-to-LTL translation. The dataset consists of three unique state spaces and thousands of diverse natural language specifications and corresponding formal specifications in temporal logic. Moreover, the benchmark contains sample traces to validate the temporal logic expressions. While the benchmark directly supports end-to-end evaluation, we observe that many frameworks decompose the process into i) lifting, ii) grounding, iii) translation, and iv) verification. The benchmark provides ground truths after each of these steps to enable researches to improve and evaluate different substeps of the overall problem. To encourage methodologically sound advances in verifiable NL-to-LTL translation approaches, we release VLTL-Bench here: https://www.kaggle.com/datasets/dubascudes/vltl bench.
TransLaw: Benchmarking Large Language Models in Multi-Agent Simulation of the Collaborative Translation
Multi-agent systems empowered by large language models (LLMs) have demonstrated remarkable capabilities in a wide range of downstream applications, including machine translation. However, the potential of LLMs in translating Hong Kong legal judgments remains uncertain due to challenges such as intricate legal terminology, culturally embedded nuances, and strict linguistic structures. In this work, we introduce TransLaw, a novel multi-agent framework implemented for real-world Hong Kong case law translation. It employs three specialized agents, namely, Translator, Annotator, and Proofreader, to collaboratively produce translations for high accuracy in legal meaning, appropriateness in style, and adequate coherence and cohesion in structure. This framework supports customizable LLM configurations and achieves tremendous cost reduction compared to professional human translation services. We evaluated its performance using 13 open-source and commercial LLMs as agents and obtained interesting findings, including that it surpasses GPT-4o in legal semantic accuracy, structural coherence, and stylistic fidelity, yet trails human experts in contextualizing complex terminology and stylistic naturalness. Our platform website is available at CityUHK, and our bilingual judgment corpus used for the evaluation is available at Hugging Face.
Pitfalls of Evaluating Language Models with Open Benchmarks
Open Large Language Model (LLM) benchmarks, such as HELM and BIG-bench, offer standardized, transparent protocols that facilitate the fair comparison, reproducibility, and iterative advancement of Language Models (LMs). However, their openness also introduces critical and underexplored pitfalls. This study exposes these weaknesses by systematically constructing ``cheating'' models -- smaller variants of BART, T5, and GPT-2 fine-tuned directly on public test sets -- which achieve top rankings on a prominent open, holistic benchmark (HELM) despite poor generalization and limited practical utility. Our findings underscore three key insights: \ca high leaderboard performance on open benchmarks may not always reflect real-world effectiveness; \cb private or dynamic benchmarks must complement open evaluations to safeguard integrity; and \cc a fundamental reevaluation of current benchmarking practices is essential to ensure robust and trustworthy LM assessments.
ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses. Although they have achieved remarkable performance across a range of multi-modal tasks, they face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications. Existing work has explored contrastive decoding approaches to mitigate this issue, where the output of the original LVLM is compared and contrasted with that of a perturbed version. However, these methods require two or more queries that slow down LVLM response generation, making them less suitable for real-time applications. To overcome this limitation, we propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment. Specifically, we enhance textual outputs by selectively amplifying crucial textual information using a text-to-visual entropy ratio for each token. Extensive experimental results demonstrate that our proposed ONLY consistently outperforms state-of-the-art methods across various benchmarks while requiring minimal implementation effort and computational cost. Code is available at https://github.com/zifuwan/ONLY.
Curated by yukajii.com |