Daily MT Picks

Archives
Subscribe
January 2, 2026

Machine Translation Digest for Dec 28 2025

Here is today's selection of cs.CL papers. The common theme revolves around the adaptation and enhancement of natural language processing models for low-resource languages and specialized tasks. From domain adaptation for Urdu fake news detection to a benchmarking framework for Turkish, these papers address critical challenges in improving language model performance across diverse applications.


Fake News Classification in Urdu: A Domain Adaptation Approach for a Low-Resource Language

Misinformation on social media is a widely acknowledged issue, and researchers worldwide are actively engaged in its detection. However, low-resource languages such as Urdu have received limited attention in this domain. An obvious approach is to utilize a multilingual pretrained language model and fine-tune it for a downstream classification task, such as misinformation detection. However, these models struggle with domain-specific terms, leading to suboptimal performance. To address this, we investigate the effectiveness of domain adaptation before fine-tuning for fake news classification in Urdu, employing a staged training approach to optimize model generalization. We evaluate two widely used multilingual models, XLM-RoBERTa and mBERT, and apply domain-adaptive pretraining using a publicly available Urdu news corpus. Experiments on four publicly available Urdu fake news datasets show that domain-adapted XLM-R consistently outperforms its vanilla counterpart, while domain-adapted mBERT exhibits mixed results.


CNSight: Evaluation of Clinical Note Segmentation Tools

Clinical notes are often stored in unstructured or semi-structured formats after extraction from electronic medical record (EMR) systems, which complicates their use for secondary analysis and downstream clinical applications. Reliable identification of section boundaries is a key step toward structuring these notes, as sections such as history of present illness, medications, and discharge instructions each provide distinct clinical contexts. In this work, we evaluate rule-based baselines, domain-specific transformer models, and large language models for clinical note segmentation using a curated dataset of 1,000 notes from MIMIC-IV. Our experiments show that large API-based models achieve the best overall performance, with GPT-5-mini reaching a best average F1 of 72.4 across sentence-level and freetext segmentation. Lightweight baselines remain competitive on structured sentence-level tasks but falter on unstructured freetext. Our results provide guidance for method selection and lay the groundwork for downstream tasks such as information extraction, cohort identification, and automated summarization.


Text-Routed Sparse Mixture-of-Experts Model with Explanation and Temporal Alignment for Multi-Modal Sentiment Analysis

Human-interaction-involved applications underscore the need for Multi-modal Sentiment Analysis (MSA). Although many approaches have been proposed to address the subtle emotions in different modalities, the power of explanations and temporal alignments is still underexplored. Thus, this paper proposes the Text-routed sparse mixture-of-Experts model with eXplanation and Temporal alignment for MSA (TEXT). TEXT first augments explanations for MSA via Multi-modal Large Language Models (MLLM), and then novelly aligns the epresentations of audio and video through a temporality-oriented neural network block. TEXT aligns different modalities with explanations and facilitates a new text-routed sparse mixture-of-experts with gate fusion. Our temporal alignment block merges the benefits of Mamba and temporal cross-attention. As a result, TEXT achieves the best performance cross four datasets among all tested models, including three recently proposed approaches and three MLLMs. TEXT wins on at least four metrics out of all six metrics. For example, TEXT decreases the mean absolute error to 0.353 on the CH-SIMS dataset, which signifies a 13.5% decrement compared with recently proposed approaches.


A Note on Hybrid Online Reinforcement and Imitation Learning for LLMs: Formulations and Algorithms

We present a unified framework for Large Language Model (LLM) fine-tuning that integrates Imitation Learning and Reinforcement Learning. By analyzing the gradient of a composite objective combining trajectory-level KL divergence with task rewards, we derive a natural decomposition into two components: (1) an analytically computable Dense Gradient for token-level imitation, and (2) a Monte Carlo estimated Sparse Gradient for long-horizon reward optimization. The Dense Gradient admits a closed-form logit-level formula, enabling efficient GPU implementation.


TabiBERT: A Large-Scale ModernBERT Foundation Model and Unified Benchmarking Framework for Turkish

Since the inception of BERT, encoder-only Transformers have evolved significantly in computational efficiency, training stability, and long-context modeling. ModernBERT consolidates these advances by integrating Rotary Positional Embeddings (RoPE), FlashAttention, and refined normalization. Despite these developments, Turkish NLP lacks a monolingual encoder trained from scratch incorporating such modern architectural paradigms. This work introduces TabiBERT, a monolingual Turkish encoder based on ModernBERT architecture trained from scratch on a large, curated corpus. TabiBERT is pre-trained on one trillion tokens sampled from an 84.88B token multi-domain corpus: web text (73%), scientific publications (20%), source code (6%), and mathematical content (0.3%). The model supports 8,192-token context length (16x original BERT), achieves up to 2.65x inference speedup, and reduces GPU memory consumption, enabling larger batch sizes. We introduce TabiBench with 28 datasets across eight task categories with standardized splits and protocols, evaluated using GLUE-style macro-averaging. TabiBERT attains 77.58 on TabiBench, outperforming BERTurk by 1.62 points and establishing state-of-the-art on five of eight categories: question answering (+9.55), code retrieval (+2.41), and document retrieval (+0.60). Compared with task-specific prior best results, including specialized models like TurkishBERTweet, TabiBERT achieves +1.47 average improvement, indicating robust cross-domain generalization. We release model weights, training configurations, and evaluation code for transparent, reproducible Turkish encoder research.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
Share this email:
Share on Facebook Share on Twitter Share on LinkedIn Share via email
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.