Machine Translation Digest for Dec 22 2025
Here is today's selection of cs.CL papers. The common theme among these works is the enhancement and evaluation of language models across various modalities and languages, from subtitles in Italian television to text generation in Thai and factuality in code models. Additionally, innovative approaches to mitigating hallucinations in vision-language models are explored, highlighting the field's ongoing efforts to improve model accuracy and reliability.
From Speech to Subtitles: Evaluating ASR Models in Subtitling Italian Television Programs
Subtitles are essential for video accessibility and audience engagement. Modern Automatic Speech Recognition (ASR) systems, built upon Encoder-Decoder neural network architectures and trained on massive amounts of data, have progressively reduced transcription errors on standard benchmark datasets. However, their performance in real-world production environments, particularly for non-English content like long-form Italian videos, remains largely unexplored. This paper presents a case study on developing a professional subtitling system for an Italian media company. To inform our system design, we evaluated four state-of-the-art ASR models (Whisper Large v2, AssemblyAI Universal, Parakeet TDT v3 0.6b, and WhisperX) on a 50-hour dataset of Italian television programs. The study highlights their strengths and limitations, benchmarking their performance against the work of professional human subtitlers. The findings indicate that, while current models cannot meet the media industry's accuracy needs for full autonomy, they can serve as highly effective tools for enhancing human productivity. We conclude that a human-in-the-loop (HITL) approach is crucial and present the production-grade, cloud-based infrastructure we designed to support this workflow.
SiamGPT: Quality-First Fine-Tuning for Stable Thai Text Generation
Open-weights large language models remain difficult to deploy for Thai due to unstable generation under complex instructions, despite strong English performance. To mitigate these limitations, We present SiamGPT-32B, an open-weights model based on Qwen3-32B, fine-tuned with a Quality-First strategy emphasizing curated supervision over data scale. The fine-tuning pipeline combines translated high-complexity English instruction data with a Thai-adapted AutoIF framework for instruction and linguistic constraints. Using supervised fine-tuning only, without continual pretraining or corpus expansion, SiamGPT-32B improves instruction adherence, multi-turn robustness, and linguistic stability. Evaluations on the SEA-HELM benchmark show that SiamGPT-32B achieves the strongest overall performance among similar-scale open-weights Thai models, with consistent gains in instruction following, multi-turn dialogue, and natural language understanding.
CodeSimpleQA: Scaling Factuality in Code Large Language Models
Large language models (LLMs) have made significant strides in code generation, achieving impressive capabilities in synthesizing code snippets from natural language instructions. However, a critical challenge remains in ensuring LLMs generate factually accurate responses about programming concepts, technical implementations, etc. Most previous code-related benchmarks focus on code execution correctness, overlooking the factual accuracy of programming knowledge. To address this gap, we present CodeSimpleQA, a comprehensive bilingual benchmark designed to evaluate the factual accuracy of code LLMs in answering code-related questions, which contains carefully curated question-answer pairs in both English and Chinese, covering diverse programming languages and major computer science domains. Further, we create CodeSimpleQA-Instruct, a large-scale instruction corpus with 66M samples, and develop a post-training framework combining supervised fine-tuning and reinforcement learning. Our comprehensive evaluation of diverse LLMs reveals that even frontier LLMs struggle with code factuality. Our proposed framework demonstrates substantial improvements over the base model, underscoring the critical importance of factuality-aware alignment in developing reliable code LLMs.
Watch Closely: Mitigating Object Hallucinations in Large Vision-Language Models with Disentangled Decoding
Large Vision-Language Models (LVLMs) bridge the gap between visual and linguistic modalities, demonstrating strong potential across a variety of domains. However, despite significant progress, LVLMs still suffer from severe hallucination issues in object recognition tasks. These models often fail to accurately identify certain objects, leading to text generation that appears fluent but does not correspond to the visual content, which can have serious consequences in real-world applications. Recently, several methods have been proposed to alleviate LVLM hallucinations, but most focus solely on reducing hallucinations in the language modality. To mitigate hallucinations in both the language and visual modalities, we introduce Hallucination Disentangled Decoding (HDD) method that requires no training. HDD enhances the original image by segmenting it and selecting images that augment the original, while also utilizing a blank image to eliminate language prior hallucinations in both the original and segmented images. This design not only reduces the model's dependence on language priors but also enhances its visual performance. (Code: https://github.com/rickeyhhh/Hallucination-Disentangled-Decoding)
Algerian Dialect
We present Algerian Dialect, a large-scale sentiment-annotated dataset consisting of 45,000 YouTube comments written in Algerian Arabic dialect. The comments were collected from more than 30 Algerian press and media channels using the YouTube Data API. Each comment is manually annotated into one of five sentiment categories: very negative, negative, neutral, positive, and very positive. In addition to sentiment labels, the dataset includes rich metadata such as collection timestamps, like counts, video URLs, and annotation dates. This dataset addresses the scarcity of publicly available resources for Algerian dialect and aims to support research in sentiment analysis, dialectal Arabic NLP, and social media analytics. The dataset is publicly available on Mendeley Data under a CC BY 4.0 license at https://doi.org/10.17632/zzwg3nnhsz.2.