Machine Translation Digest for Dec 17 2025
Here is today's selection of cs.CL papers. The common theme across these works is the exploration of advanced methodologies in machine translation and evaluation, with a focus on enhancing performance through multimodal integration and specialized assessments. These studies highlight innovations in handling complex linguistic challenges and evaluating educational and low-resource language tasks.
From NLG Evaluation to Modern Student Assessment in the Era of ChatGPT: The Great Misalignment Problem and Pedagogical Multi-Factor Assessment (P-MFA)
This paper explores the growing epistemic parallel between NLG evaluation and grading of students in a Finnish University. We argue that both domains are experiencing a Great Misalignment Problem. As students increasingly use tools like ChatGPT to produce sophisticated outputs, traditional assessment methods that focus on final products rather than learning processes have lost their validity. To address this, we introduce the Pedagogical Multi-Factor Assessment (P-MFA) model, a process-based, multi-evidence framework inspired by the logic of multi-factor authentication.
An Empirical Study on Chinese Character Decomposition in Multiword Expression-Aware Neural Machine Translation
Word meaning, representation, and interpretation play fundamental roles in natural language understanding (NLU), natural language processing (NLP), and natural language generation (NLG) tasks. Many of the inherent difficulties in these tasks stem from Multi-word Expressions (MWEs), which complicate the tasks by introducing ambiguity, idiomatic expressions, infrequent usage, and a wide range of variations. Significant effort and substantial progress have been made in addressing the challenging nature of MWEs in Western languages, particularly English. This progress is attributed in part to the well-established research communities and the abundant availability of computational resources. However, the same level of progress is not true for language families such as Chinese and closely related Asian languages, which continue to lag behind in this regard. While sub-word modelling has been successfully applied to many Western languages to address rare words improving phrase comprehension, and enhancing machine translation (MT) through techniques like byte-pair encoding (BPE), it cannot be applied directly to ideograph language scripts like Chinese. In this work, we conduct a systematic study of the Chinese character decomposition technology in the context of MWE-aware neural machine translation (NMT). Furthermore, we report experiments to examine how Chinese character decomposition technology contributes to the representation of the original meanings of Chinese words and characters, and how it can effectively address the challenges of translating MWEs.
Seeing Beyond Words: Self-Supervised Visual Learning for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have recently demonstrated impressive capabilities in connecting vision and language, yet their proficiency in fundamental visual reasoning tasks remains limited. This limitation can be attributed to the fact that MLLMs learn visual understanding primarily from textual descriptions, which constitute a subjective and inherently incomplete supervisory signal. Furthermore, the modest scale of multimodal instruction tuning compared to massive text-only pre-training leads MLLMs to overfit language priors while overlooking visual details. To address these issues, we introduce JARVIS, a JEPA-inspired framework for self-supervised visual enhancement in MLLMs. Specifically, we integrate the I-JEPA learning paradigm into the standard vision-language alignment pipeline of MLLMs training. Our approach leverages frozen vision foundation models as context and target encoders, while training the predictor, implemented as the early layers of an LLM, to learn structural and semantic regularities from images without relying exclusively on language supervision. Extensive experiments on standard MLLM benchmarks show that JARVIS consistently improves performance on vision-centric benchmarks across different LLM families, without degrading multimodal reasoning abilities. Our source code is publicly available at: https://github.com/aimagelab/JARVIS.
Evaluating Large Language Models on Multimodal Chemistry Olympiad Exams
Multimodal scientific reasoning remains a significant challenge for large language models (LLMs), particularly in chemistry, where problem-solving relies on symbolic diagrams, molecular structures, and structured visual data. Here, we systematically evaluate 40 proprietary and open-source multimodal LLMs, including GPT-5, o3, Gemini-2.5-Pro, and Qwen2.5-VL, on a curated benchmark of Olympiad-style chemistry questions drawn from over two decades of U.S. National Chemistry Olympiad (USNCO) exams. These questions require integrated visual and textual reasoning across diverse modalities. We find that many models struggle with modality fusion, where in some cases, removing the image even improves accuracy, indicating misalignment in vision-language integration. Chain-of-Thought prompting consistently enhances both accuracy and visual grounding, as demonstrated through ablation studies and occlusion-based interpretability. Our results reveal critical limitations in the scientific reasoning abilities of current MLLMs, providing actionable strategies for developing more robust and interpretable multimodal systems in chemistry. This work provides a timely benchmark for measuring progress in domain-specific multimodal AI and underscores the need for further advances at the intersection of artificial intelligence and scientific reasoning.
Yes-MT's Submission to the Low-Resource Indic Language Translation Shared Task in WMT 2024
This paper presents the systems submitted by the Yes-MT team for the Low-Resource Indic Language Translation Shared Task at WMT 2024 (Pakray et al., 2024), focusing on translating between English and the Assamese, Mizo, Khasi, and Manipuri languages. The experiments explored various approaches, including fine-tuning pre-trained models like mT5 (Xue et al., 2020) and IndicBart (Dabre et al., 2021) in both multilingual and monolingual settings, LoRA (Hu et al., 2021) fine-tuning IndicTrans2 (Gala et al., 2023), zero-shot and few-shot prompting (Brown, 2020) with large language models (LLMs) like Llama 3 (Dubey et al., 2024) and Mixtral 8x7b (Jiang et al., 2024), LoRA supervised fine-tuning of Llama 3 (Mecklenburg et al., 2024), and training Transformer models (Vaswani, 2017) from scratch. The results were evaluated on the WMT23 Low-Resource Indic Language Translation Shared Task test data using SacreBLEU (Post, 2018) and CHRF (Popovic, 2015), highlighting the challenges of low-resource translation and the potential of LLMs for these tasks, particularly with fine-tuning.