Machine Translation Digest for Dec 15 2025
Here is today's selection of cs.CL papers exploring advancements in multilingual and language-specific applications. The papers highlight innovative frameworks and tools such as multilingual legal terminology mapping, scalable architectures for video translation, and benchmarks for Finnish language models, emphasizing the growing focus on diverse linguistic challenges.
Building from Scratch: A Multi-Agent Framework with Human-in-the-Loop for Multilingual Legal Terminology Mapping
Accurately mapping legal terminology across languages remains a significant challenge, especially for language pairs like Chinese and Japanese, which share a large number of homographs with different meanings. Existing resources and standardized tools for these languages are limited. To address this, we propose a human-AI collaborative approach for building a multilingual legal terminology database, based on a multi-agent framework. This approach integrates advanced large language models and legal domain experts throughout the entire process-from raw document preprocessing, article-level alignment, to terminology extraction, mapping, and quality assurance. Unlike a single automated pipeline, our approach places greater emphasis on how human experts participate in this multi-agent system. Humans and AI agents take on different roles: AI agents handle specific, repetitive tasks, such as OCR, text segmentation, semantic alignment, and initial terminology extraction, while human experts provide crucial oversight, review, and supervise the outputs with contextual knowledge and legal judgment. We tested the effectiveness of this framework using a trilingual parallel corpus comprising 35 key Chinese statutes, along with their English and Japanese translations. The experimental results show that this human-in-the-loop, multi-agent workflow not only improves the precision and consistency of multilingual legal terminology mapping but also offers greater scalability compared to traditional manual methods.
FIN-bench-v2: A Unified and Robust Benchmark Suite for Evaluating Finnish Large Language Models
We introduce FIN-bench-v2, a unified benchmark suite for evaluating large language models in Finnish. FIN-bench-v2 consolidates Finnish versions of widely used benchmarks together with an updated and expanded version of the original FIN-bench into a single, consistently formatted collection, covering multiple-choice and generative tasks across reading comprehension, commonsense reasoning, sentiment analysis, world knowledge, and alignment. All datasets are converted to HuggingFace Datasets, which include both cloze and multiple-choice prompt formulations with five variants per task, and we incorporate human annotation or review for machine-translated resources such as GoldenSwag and XED. To select robust tasks, we pretrain a set of 2.15B-parameter decoder-only models and use their learning curves to compute monotonicity, signal-to-noise, non-random performance, and model ordering consistency, retaining only tasks that satisfy all criteria. We further evaluate a set of larger instruction-tuned models to characterize performance across tasks and prompt formulations. All datasets, prompts, and evaluation configurations are publicly available via our fork of the Language Model Evaluation Harness at https://github.com/LumiOpen/lm-evaluation-harness. Supplementary resources are released in a separate repository at https://github.com/TurkuNLP/FIN-bench-v2.
Generative AI for Video Translation: A Scalable Architecture for Multilingual Video Conferencing
The real-time deployment of cascaded generative AI pipelines for applications like video translation is constrained by significant system-level challenges. These include the cumulative latency of sequential model inference and the quadratic ($\mathcal{O}(N^2)$) computational complexity that renders multi-user video conferencing applications unscalable. This paper proposes and evaluates a practical system-level framework designed to mitigate these critical bottlenecks. The proposed architecture incorporates a turn-taking mechanism to reduce computational complexity from quadratic to linear in multi-user scenarios, and a segmented processing protocol to manage inference latency for a perceptually real-time experience. We implement a proof-of-concept pipeline and conduct a rigorous performance analysis across a multi-tiered hardware setup, including commodity (NVIDIA RTX 4060), cloud (NVIDIA T4), and enterprise (NVIDIA A100) GPUs. Our objective evaluation demonstrates that the system achieves real-time throughput ($τ< 1.0$) on modern hardware. A subjective user study further validates the approach, showing that a predictable, initial processing delay is highly acceptable to users in exchange for a smooth, uninterrupted playback experience. The work presents a validated, end-to-end system design that offers a practical roadmap for deploying scalable, real-time generative AI applications in multilingual communication platforms.
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
We present an open deep research system for long-form question answering, selected as a winning system in the text-to-text track of the MMU-RAG competition at NeurIPS 2025. The system combines an open-source large language model (LLM) with an open web search API to perform iterative retrieval, reasoning, and synthesis in real-world open-domain settings. To enhance reasoning quality, we apply preference tuning based on LLM-as-a-judge feedback that evaluates multiple aspects, including clarity, insightfulness, and factuality. Our experimental results show that the proposed method consistently improves answer quality across all three aspects. Our source code is publicly available at https://github.com/efficient-deep-research/efficient-deep-research.
PrahokBART: A Pre-trained Sequence-to-Sequence Model for Khmer Natural Language Generation
This work introduces {\it PrahokBART}, a compact pre-trained sequence-to-sequence model trained from scratch for Khmer using carefully curated Khmer and English corpora. We focus on improving the pre-training corpus quality and addressing the linguistic issues of Khmer, which are ignored in existing multilingual models, by incorporating linguistic components such as word segmentation and normalization. We evaluate PrahokBART on three generative tasks: machine translation, text summarization, and headline generation, where our results demonstrate that it outperforms mBART50, a strong multilingual pre-trained model. Additionally, our analysis provides insights into the impact of each linguistic module and evaluates how effectively our model handles space during text generation, which is crucial for the naturalness of texts in Khmer.