Machine Translation Digest for Dec 14 2025
Here is today's selection of cs.CL papers focusing on advancements in machine translation and evaluation techniques. The papers explore innovative methods such as using hypernetworks for text editing in large language models and examining data selection's impact on continued pretraining. Additionally, they address the challenges of evaluating long-form content and repository generation, highlighting the importance of reasoning and dynamic interleaving in complex tasks.
HyperEdit: Unlocking Instruction-based Text Editing in LLMs via Hypernetworks
Instruction-based text editing is increasingly critical for real-world applications such as code editors (e.g., Cursor), but Large Language Models (LLMs) continue to struggle with this task. Unlike free-form generation, editing requires faithfully implementing user instructions while preserving unchanged content, as even minor unintended modifications can break functionality. Existing approaches treat editing as generic text generation, leading to two key failures: they struggle to faithfully align edits with diverse user intents, and they often over-edit unchanged regions. We propose HyperEdit to address both issues. First, we introduce hypernetwork-based dynamic adaptation that generates request-specific parameters, enabling the model to tailor its editing strategy to each instruction. Second, we develop difference-aware regularization that focuses supervision on modified spans, preventing over-editing while ensuring precise, minimal changes. HyperEdit achieves a 9%--30% relative improvement in BLEU on modified regions over state-of-the-art baselines, despite utilizing only 3B parameters.
What Matters in Evaluating Book-Length Stories? A Systematic Study of Long Story Evaluation
In this work, we conduct systematic research in a challenging area: the automatic evaluation of book-length stories (>100K tokens). Our study focuses on two key questions: (1) understanding which evaluation aspects matter most to readers, and (2) exploring effective methods for evaluating lengthy stories. We introduce the first large-scale benchmark, LongStoryEval, comprising 600 newly published books with an average length of 121K tokens (maximum 397K). Each book includes its average rating and multiple reader reviews, presented as critiques organized by evaluation aspects. By analyzing all user-mentioned aspects, we propose an evaluation criteria structure and conduct experiments to identify the most significant aspects among the 8 top-level criteria. For evaluation methods, we compare the effectiveness of three types: aggregation-based, incremental-updated, and summary-based evaluations. Our findings reveal that aggregation- and summary-based evaluations perform better, with the former excelling in detail assessment and the latter offering greater efficiency. Building on these insights, we further propose NovelCritique, an 8B model that leverages the efficient summary-based framework to review and score stories across specified aspects. NovelCritique outperforms commercial models like GPT-4o in aligning with human evaluations. Our datasets and codes are available at https://github.com/DingyiYang/LongStoryEval.
Reasoning Within the Mind: Dynamic Multimodal Interleaving in Latent Space
Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced cross-modal understanding and reasoning by incorporating Chain-of-Thought (CoT) reasoning in the semantic space. Building upon this, recent studies extend the CoT mechanism to the visual modality, enabling models to integrate visual information during reasoning through external tools or explicit image generation. However, these methods remain dependent on explicit step-by-step reasoning, unstable perception-reasoning interaction and notable computational overhead. Inspired by human cognition, we posit that thinking unfolds not linearly but through the dynamic interleaving of reasoning and perception within the mind. Motivated by this perspective, we propose DMLR, a test-time Dynamic Multimodal Latent Reasoning framework that employs confidence-guided latent policy gradient optimization to refine latent think tokens for in-depth reasoning. Furthermore, a Dynamic Visual Injection Strategy is introduced, which retrieves the most relevant visual features at each latent think token and updates the set of best visual patches. The updated patches are then injected into latent think token to achieve dynamic visual-textual interleaving. Experiments across seven multimodal reasoning benchmarks and various model architectures demonstrate that DMLR significantly improves reasoning and perception performance while maintaining high inference efficiency.
Curió-Edu 7B: Examining Data Selection Impacts in LLM Continued Pretraining
Continued pretraining extends a language model's capabilities by further exposing it to additional data, often tailored to a specific linguistic or domain context. This strategy has emerged as an efficient alternative to full retraining when adapting general-purpose models to new settings. In this work, we investigate this paradigm through Curió 7B, a 7-billion-parameter model derived from LLaMA-2 and trained on 100 billion Portuguese tokens from the ClassiCC-PT corpus - the most extensive Portuguese-specific continued-pretraining effort above the three-billion-parameter scale to date. Beyond scale, we investigate whether quantity alone suffices or whether data quality plays a decisive role in linguistic adaptation. To this end, we introduce Curió-Edu 7B, a variant trained exclusively on the educational and STEM-filtered subset of the same corpus, totaling just 10 billion tokens. Despite using only 10% of the data and 20% of the computation, Curió-Edu 7B surpasses the full-corpus model in our evaluations, demonstrating that data selection can be fundamental even when adapting models with limited prior exposure to the target language. The developed models are available at https://huggingface.co/collections/ClassiCC-Corpus/curio-edu
NL2Repo-Bench: Towards Long-Horizon Repository Generation Evaluation of Coding Agents
Recent advances in coding agents suggest rapid progress toward autonomous software development, yet existing benchmarks fail to rigorously evaluate the long-horizon capabilities required to build complete software systems. Most prior evaluations focus on localized code generation, scaffolded completion, or short-term repair tasks, leaving open the question of whether agents can sustain coherent reasoning, planning, and execution over the extended horizons demanded by real-world repository construction. To address this gap, we present NL2Repo Bench, a benchmark explicitly designed to evaluate the long-horizon repository generation ability of coding agents. Given only a single natural-language requirements document and an empty workspace, agents must autonomously design the architecture, manage dependencies, implement multi-module logic, and produce a fully installable Python library. Our experiments across state-of-the-art open- and closed-source models reveal that long-horizon repository generation remains largely unsolved: even the strongest agents achieve below 40% average test pass rates and rarely complete an entire repository correctly. Detailed analysis uncovers fundamental long-horizon failure modes, including premature termination, loss of global coherence, fragile cross-file dependencies, and inadequate planning over hundreds of interaction steps. NL2Repo Bench establishes a rigorous, verifiable testbed for measuring sustained agentic competence and highlights long-horizon reasoning as a central bottleneck for the next generation of autonomous coding agents.