Machine Translation Digest for Dec 10 2025
Here is today's selection of cs.CL papers. The common theme revolves around the innovative applications of language models across various domains, including legal document interpretation and mental health assessment. Additionally, advancements in efficient continual learning and neurosymbolic information extraction highlight the ongoing evolution and versatility of neural machine translation technologies.
LLMs in Interpreting Legal Documents
This chapter explores the application of Large Language Models in the legal domain, showcasing their potential to optimise and augment traditional legal tasks by analysing possible use cases, such as assisting in interpreting statutes, contracts, and case law, enhancing clarity in legal summarisation, contract negotiation, and information retrieval. There are several challenges that can arise from the application of such technologies, such as algorithmic monoculture, hallucinations, and compliance with existing regulations, including the EU's AI Act and recent U.S. initiatives, alongside the emerging approaches in China. Furthermore, two different benchmarks are presented.
Efficient Continual Learning in Neural Machine Translation: A Low-Rank Adaptation Approach
Continual learning in Neural Machine Translation (NMT) faces the dual challenges of catastrophic forgetting and the high computational cost of retraining. This study establishes Low-Rank Adaptation (LoRA) as a parameter-efficient framework to address these challenges in dedicated NMT architectures. We first demonstrate that LoRA-based fine-tuning adapts NMT models to new languages and domains with performance on par with full-parameter techniques, while utilizing only a fraction of the parameter space. Second, we propose an interactive adaptation method using a calibrated linear combination of LoRA modules. This approach functions as a gate-free mixture of experts, enabling real-time, user-controllable adjustments to domain and style without retraining. Finally, to mitigate catastrophic forgetting, we introduce a novel gradient-based regularization strategy specifically designed for low-rank decomposition matrices. Unlike methods that regularize the full parameter set, our approach weights the penalty on the low-rank updates using historical gradient information. Experimental results indicate that this strategy efficiently preserves prior domain knowledge while facilitating the acquisition of new tasks, offering a scalable paradigm for interactive and continual NMT.
Neurosymbolic Information Extraction from Transactional Documents
This paper presents a neurosymbolic framework for information extraction from documents, evaluated on transactional documents. We introduce a schema-based approach that integrates symbolic validation methods to enable more effective zero-shot output and knowledge distillation. The methodology uses language models to generate candidate extractions, which are then filtered through syntactic-, task-, and domain-level validation to ensure adherence to domain-specific arithmetic constraints. Our contributions include a comprehensive schema for transactional documents, relabeled datasets, and an approach for generating high-quality labels for knowledge distillation. Experimental results demonstrate significant improvements in $F_1$-scores and accuracy, highlighting the effectiveness of neurosymbolic validation in transactional document processing.
Language models as tools for investigating the distinction between possible and impossible natural languages
We argue that language models (LMs) have strong potential as investigative tools for probing the distinction between possible and impossible natural languages and thus uncovering the inductive biases that support human language learning. We outline a phased research program in which LM architectures are iteratively refined to better discriminate between possible and impossible languages, supporting linking hypotheses to human cognition.
MentraSuite: Post-Training Large Language Models for Mental Health Reasoning and Assessment
Mental health disorders affect hundreds of millions globally, and the Web now serves as a primary medium for accessing support, information, and assessment. Large language models (LLMs) offer scalable and accessible assistance, yet their deployment in mental-health settings remains risky when their reasoning is incomplete, inconsistent, or ungrounded. Existing psychological LLMs emphasize emotional understanding or knowledge recall but overlook the step-wise, clinically aligned reasoning required for appraisal, diagnosis, intervention planning, abstraction, and verification. To address these issues, we introduce MentraSuite, a unified framework for advancing reliable mental-health reasoning. We propose MentraBench, a comprehensive benchmark spanning five core reasoning aspects, six tasks, and 13 datasets, evaluating both task performance and reasoning quality across five dimensions: conciseness, coherence, hallucination avoidance, task understanding, and internal consistency. We further present Mindora, a post-trained model optimized through a hybrid SFT-RL framework with an inconsistency-detection reward to enforce faithful and coherent reasoning. To support training, we construct high-quality trajectories using a novel reasoning trajectory generation strategy, that strategically filters difficult samples and applies a structured, consistency-oriented rewriting process to produce concise, readable, and well-balanced trajectories. Across 20 evaluated LLMs, Mindora achieves the highest average performance on MentraBench and shows remarkable performances in reasoning reliability, demonstrating its effectiveness for complex mental-health scenarios.