Machine Translation Digest for Aug 29 2025
Here is today's selection of cs.CL papers exploring advancements and challenges in language processing technologies. The papers discuss innovative approaches such as leveraging quantum computing for natural language generation, enhancing benchmark coverage through automatic captioning, and examining the applications and limitations of large language models. Additionally, they highlight the significance of comprehensive content analysis, from line-level OCR to indexing online content for problematic material.
BLUEX Revisited: Enhancing Benchmark Coverage with Automatic Captioning
With the growing capabilities of Large Language Models (LLMs), there is an increasing need for robust evaluation methods, especially in multilingual and non-English contexts. We present an updated version of the BLUEX dataset, now including 2024-2025 exams and automatically generated image captions using state-of-the-art models, enhancing its relevance for data contamination studies in LLM pretraining. Captioning strategies increase accessibility to text-only models by more than 40%, producing 1,422 usable questions, more than doubling the number in the original BLUEX. We evaluated commercial and open-source LLMs and their ability to leverage visual context through captions.
Quantum-Enhanced Natural Language Generation: A Multi-Model Framework with Hybrid Quantum-Classical Architectures
This paper presents a comprehensive evaluation of quantum text generation models against traditional Transformer/MLP architectures, addressing the growing interest in quantum computing applications for natural language processing. We conduct systematic experiments comparing five distinct models: Transformer (baseline), Quantum Kernel Self-Attention Network (QKSAN), Quantum RWKV (QRWKV), and Quantum Attention Sequence Architecture (QASA) across five diverse datasets including simple sentences, short stories, quantum phrases, haiku poetry, and proverbs. Our evaluation employs multiple metrics including perplexity, BLEU scores, vocabulary diversity, repetition rates, and fluency measures to assess different aspects of text generation quality. The experimental results reveal that while traditional Transformer models maintain overall superiority with the lowest average perplexity (1.21) and highest BLEU-1 score (0.2895), quantum-inspired models demonstrate competitive performance in specific scenarios. Notably, QKSAN achieves a competitive BLEU-1 score of 0.2800 while maintaining zero repetition rates, and QRWKV demonstrates perfect vocabulary diversity (Distinct-1 = 1.000) in certain tasks.
Challenges and Applications of Large Language Models: A Comparison of GPT and DeepSeek family of models
Large Language Models (LLMs) are transforming AI across industries, but their development and deployment remain complex. This survey reviews 16 key challenges in building and using LLMs and examines how these challenges are addressed by two state-of-the-art models with unique approaches: OpenAI's closed source GPT-4o (May 2024 update) and DeepSeek-V3-0324 (March 2025), a large open source Mixture-of-Experts model. Through this comparison, we showcase the trade-offs between closed source models (robust safety, fine-tuned reliability) and open source models (efficiency, adaptability). We also explore LLM applications across different domains (from chatbots and coding tools to healthcare and education), highlighting which model attributes are best suited for each use case. This article aims to guide AI researchers, developers, and decision-makers in understanding current LLM capabilities, limitations, and best practices.
Why Stop at Words? Unveiling the Bigger Picture through Line-Level OCR
Conventional optical character recognition (OCR) techniques segmented each character and then recognized. This made them prone to error in character segmentation, and devoid of context to exploit language models. Advances in sequence to sequence translation in last decade led to modern techniques first detecting words and then inputting one word at a time to a model to directly output full words as sequence of characters. This allowed better utilization of language models and bypass error-prone character segmentation step. We observe that the above transition in style has moved the bottleneck in accuracy to word segmentation. Hence, in this paper, we propose a natural and logical progression from word level OCR to line-level OCR. The proposal allows to bypass errors in word detection, and provides larger sentence context for better utilization of language models. We show that the proposed technique not only improves the accuracy but also efficiency of OCR. Despite our thorough literature survey, we did not find any public dataset to train and benchmark such shift from word to line-level OCR. Hence, we also contribute a meticulously curated dataset of 251 English page images with line-level annotations. Our experimentation revealed a notable end-to-end accuracy improvement of 5.4%, underscoring the potential benefits of transitioning towards line-level OCR, especially for document images. We also report a 4 times improvement in efficiency compared to word-based pipelines. With continuous improvements in large language models, our methodology also holds potential to exploit such advances. Project Website: https://nishitanand.github.io/line-level-ocr-website
Going over Fine Web with a Fine-Tooth Comb: Technical Report of Indexing Fine Web for Problematic Content Search and Retrieval
Large language models (LLMs) rely heavily on web-scale datasets like Common Crawl, which provides over 80\% of training data for some modern models. However, the indiscriminate nature of web crawling raises challenges in data quality, safety, and ethics. Despite the critical importance of training data quality, prior research on harmful content has been limited to small samples due to computational constraints. This project presents a framework for indexing and analyzing LLM training datasets using an ElasticSearch-based pipeline. We apply it to SwissAI's FineWeb-2 corpus (1.5TB, four languages), achieving fast query performance--most searches in milliseconds, all under 2 seconds. Our work demonstrates real-time dataset analysis, offering practical tools for safer, more accountable AI systems.
Curated by yukajii.com |