Daily MT Picks

Subscribe
Archives
August 27, 2025

Machine Translation Digest for Aug 22 2025

Here is today's selection of cs.CL papers focusing on the intersection of language models and specialized domains. The papers highlight advancements in creating multilingual and domain-specific resources, such as health translation for low-resource languages and question-answering benchmarks in fields like law, medicine, and construction.


OpenWHO: A Document-Level Parallel Corpus for Health Translation in Low-Resource Languages

In machine translation (MT), health is a high-stakes domain characterised by widespread deployment and domain-specific vocabulary. However, there is a lack of MT evaluation datasets for low-resource languages in this domain. To address this gap, we introduce OpenWHO, a document-level parallel corpus of 2,978 documents and 26,824 sentences from the World Health Organization's e-learning platform. Sourced from expert-authored, professionally translated materials shielded from web-crawling, OpenWHO spans a diverse range of over 20 languages, of which nine are low-resource. Leveraging this new resource, we evaluate modern large language models (LLMs) against traditional MT models. Our findings reveal that LLMs consistently outperform traditional MT models, with Gemini 2.5 Flash achieving a +4.79 ChrF point improvement over NLLB-54B on our low-resource test set. Further, we investigate how LLM context utilisation affects accuracy, finding that the benefits of document-level translation are most pronounced in specialised domains like health. We release the OpenWHO corpus to encourage further research into low-resource MT in the health domain.


M3TQA: Massively Multilingual Multitask Table Question Answering

Tabular data is a fundamental component of real-world information systems, yet most research in table understanding remains confined to English, leaving multilingual comprehension significantly underexplored. Existing multilingual table benchmarks suffer from geolinguistic imbalance - overrepresenting certain languages and lacking sufficient scale for rigorous cross-lingual analysis. To address these limitations, we introduce a comprehensive framework for massively multilingual multitask table question answering, featuring m3TQA-Instruct, a large-scale benchmark spanning 97 languages across diverse language families, including underrepresented and low-resource languages. We construct m3TQA by curating 50 real-world tables in Chinese and English, then applying a robust six-step LLM-based translation pipeline powered by DeepSeek and GPT-4o, achieving high translation fidelity with a median BLEU score of 60.19 as validated through back-translation. The benchmark includes 2,916 professionally annotated question-answering pairs across four tasks designed to evaluate nuanced table reasoning capabilities. Experiments on state-of-the-art LLMs reveal critical insights into cross-lingual generalization, demonstrating that synthetically generated, unannotated QA data can significantly boost performance, particularly for low-resource languages. M3T-Bench establishes a new standard for multilingual table understanding, providing both a challenging evaluation platform and a scalable methodology for future research.


MizanQA: Benchmarking Large Language Models on Moroccan Legal Question Answering

The rapid advancement of large language models (LLMs) has significantly propelled progress in natural language processing (NLP). However, their effectiveness in specialized, low-resource domains-such as Arabic legal contexts-remains limited. This paper introduces MizanQA (pronounced Mizan, meaning "scale" in Arabic, a universal symbol of justice), a benchmark designed to evaluate LLMs on Moroccan legal question answering (QA) tasks, characterised by rich linguistic and legal complexity. The dataset draws on Modern Standard Arabic, Islamic Maliki jurisprudence, Moroccan customary law, and French legal influences. Comprising over 1,700 multiple-choice questions, including multi-answer formats, MizanQA captures the nuances of authentic legal reasoning. Benchmarking experiments with multilingual and Arabic-focused LLMs reveal substantial performance gaps, highlighting the need for tailored evaluation metrics and culturally grounded, domain-specific LLM development.


MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian

Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.


CEQuest: Benchmarking Large Language Models for Construction Estimation

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of general-domain tasks. However, their effectiveness in specialized fields, such as construction, remains underexplored. In this paper, we introduce CEQuest, a novel benchmark dataset specifically designed to evaluate the performance of LLMs in answering construction-related questions, particularly in the areas of construction drawing interpretation and estimation. We conduct comprehensive experiments using five state-of-the-art LLMs, including Gemma 3, Phi4, LLaVA, Llama 3.3, and GPT-4.1, and evaluate their performance in terms of accuracy, execution time, and model size. Our experimental results demonstrate that current LLMs exhibit considerable room for improvement, highlighting the importance of integrating domain-specific knowledge into these models. To facilitate further research, we will open-source the proposed CEQuest dataset, aiming to foster the development of specialized large language models (LLMs) tailored to the construction domain.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.