Daily MT Picks

Subscribe
Archives
August 23, 2025

Machine Translation Digest for Aug 18 2025

Here is today's selection of cs.CL papers focused on advancements in multilingual and machine translation technologies. The research explores new datasets and methodologies for document-level translation, innovations in handling latency for on-device speech translation, and analyses tokenization standards in natural language processing.


DocHPLT: A Massively Multilingual Document-Level Translation Dataset

Existing document-level machine translation resources are only available for a handful of languages, mostly high-resourced ones. To facilitate the training and evaluation of document-level translation and, more broadly, long-context modeling for global communities, we create DocHPLT, the largest publicly available document-level translation dataset to date. It contains 124 million aligned document pairs across 50 languages paired with English, comprising 4.26 billion sentences, with further possibility to provide 2500 bonus pairs not involving English. Unlike previous reconstruction-based approaches that piece together documents from sentence-level data, we modify an existing web extraction pipeline to preserve complete document integrity from the source, retaining all content including unaligned portions. After our preliminary experiments identify the optimal training context strategy for document-level translation, we demonstrate that LLMs fine-tuned on DocHPLT substantially outperform off-the-shelf instruction-tuned baselines, with particularly dramatic improvements for under-resourced languages. We open-source the dataset under a permissive license, providing essential infrastructure for advancing multilingual document-level translation.


From SALAMANDRA to SALAMANDRATA: BSC Submission for WMT25 General Machine Translation Shared Task

In this paper, we present the SALAMANDRATA family of models, an improved iteration of SALAMANDRA LLMs (Gonzalez-Agirre et al., 2025) specifically trained to achieve strong performance in translation-related tasks for 38 European languages. SALAMANDRATA comes in two scales: 2B and 7B parameters. For both versions, we applied the same training recipe with a first step of continual pre-training on parallel data, and a second step of supervised fine-tuning on high-quality instructions. The BSC submission to the WMT25 General Machine Translation shared task is based on the 7B variant of SALAMANDRATA. We first adapted the model vocabulary to support the additional non-European languages included in the task. This was followed by a second phase of continual pre-training and supervised fine-tuning, carefully designed to optimize performance across all translation directions for this year's shared task. For decoding, we employed two quality-aware strategies: Minimum Bayes Risk Decoding and Tuned Re-ranking using COMET and COMET-KIWI respectively. We publicly release both the 2B and 7B versions of SALAMANDRATA, along with the newer SALAMANDRATA-V2 model, on Hugging Face1


Overcoming Latency Bottlenecks in On-Device Speech Translation: A Cascaded Approach with Alignment-Based Streaming MT

This paper tackles several challenges that arise when integrating Automatic Speech Recognition (ASR) and Machine Translation (MT) for real-time, on-device streaming speech translation. Although state-of-the-art ASR systems based on Recurrent Neural Network Transducers (RNN-T) can perform real-time transcription, achieving streaming translation in real-time remains a significant challenge. To address this issue, we propose a simultaneous translation approach that effectively balances translation quality and latency. We also investigate efficient integration of ASR and MT, leveraging linguistic cues generated by the ASR system to manage context and utilizing efficient beam-search pruning techniques such as time-out and forced finalization to maintain system's real-time factor. We apply our approach to an on-device bilingual conversational speech translation and demonstrate that our techniques outperform baselines in terms of latency and quality. Notably, our technique narrows the quality gap with non-streaming translation systems, paving the way for more accurate and efficient real-time speech translation.


RepreGuard: Detecting LLM-Generated Text by Revealing Hidden Representation Patterns

Detecting content generated by large language models (LLMs) is crucial for preventing misuse and building trustworthy AI systems. Although existing detection methods perform well, their robustness in out-of-distribution (OOD) scenarios is still lacking. In this paper, we hypothesize that, compared to features used by existing detection methods, the internal representations of LLMs contain more comprehensive and raw features that can more effectively capture and distinguish the statistical pattern differences between LLM-generated texts (LGT) and human-written texts (HWT). We validated this hypothesis across different LLMs and observed significant differences in neural activation patterns when processing these two types of texts. Based on this, we propose RepreGuard, an efficient statistics-based detection method. Specifically, we first employ a surrogate model to collect representation of LGT and HWT, and extract the distinct activation feature that can better identify LGT. We can classify the text by calculating the projection score of the text representations along this feature direction and comparing with a precomputed threshold. Experimental results show that RepreGuard outperforms all baselines with average 94.92% AUROC on both in-distribution (ID) and OOD scenarios, while also demonstrating robust resilience to various text sizes and mainstream attacks. Data and code are publicly available at: https://github.com/NLP2CT/RepreGuard


Doğal Dil İşlemede Tokenizasyon Standartları ve Ölçümü: Türkçe Üzerinden Büyük Dil Modellerinin Karşılaştırmalı Analizi

Tokenization is a fundamental preprocessing step in Natural Language Processing (NLP), significantly impacting the capability of large language models (LLMs) to capture linguistic and semantic nuances. This study introduces a novel evaluation framework addressing tokenization challenges specific to morphologically-rich and low-resource languages such as Turkish. Utilizing the Turkish MMLU (TR-MMLU) dataset, comprising 6,200 multiple-choice questions from the Turkish education system, we assessed tokenizers based on vocabulary size, token count, processing time, language-specific token percentages (\%TR), and token purity (\%Pure). These newly proposed metrics measure how effectively tokenizers preserve linguistic structures. Our analysis reveals that language-specific token percentages exhibit a stronger correlation with downstream performance (e.g., MMLU scores) than token purity. Furthermore, increasing model parameters alone does not necessarily enhance linguistic performance, underscoring the importance of tailored, language-specific tokenization methods. The proposed framework establishes robust and practical tokenization standards for morphologically complex languages.

Curated by yukajii.com
Don't miss what's next. Subscribe to Daily MT Picks:
LinkedIn
Powered by Buttondown, the easiest way to start and grow your newsletter.