Machine Translation Digest for Aug 14 2025
Here is today's selection of cs.CL papers focusing on innovative approaches in machine translation and multimodal language models. The papers explore strategies for low-resource languages, enhancing transparency in AI systems, and improving translation and reasoning capabilities using external tools and resources.
Neural Machine Translation for Coptic-French: Strategies for Low-Resource Ancient Languages
This paper presents the first systematic study of strategies for translating Coptic into French. Our comprehensive pipeline systematically evaluates: pivot versus direct translation, the impact of pre-training, the benefits of multi-version fine-tuning, and model robustness to noise. Utilizing aligned biblical corpora, we demonstrate that fine-tuning with a stylistically-varied and noise-aware training corpus significantly enhances translation quality. Our findings provide crucial practical insights for developing translation tools for historical languages in general.
From Black Box to Transparency: Enhancing Automated Interpreting Assessment with Explainable AI in College Classrooms
Recent advancements in machine learning have spurred growing interests in automated interpreting quality assessment. Nevertheless, existing research suffers from insufficient examination of language use quality, unsatisfactory modeling effectiveness due to data scarcity and imbalance, and a lack of efforts to explain model predictions. To address these gaps, we propose a multi-dimensional modeling framework that integrates feature engineering, data augmentation, and explainable machine learning. This approach prioritizes explainability over ``black box'' predictions by utilizing only construct-relevant, transparent features and conducting Shapley Value (SHAP) analysis. Our results demonstrate strong predictive performance on a novel English-Chinese consecutive interpreting dataset, identifying BLEURT and CometKiwi scores to be the strongest predictive features for fidelity, pause-related features for fluency, and Chinese-specific phraseological diversity metrics for language use. Overall, by placing particular emphasis on explainability, we present a scalable, reliable, and transparent alternative to traditional human evaluation, facilitating the provision of detailed diagnostic feedback for learners and supporting self-regulated learning advantages not afforded by automated scores in isolation.
Empowering Multimodal LLMs with External Tools: A Comprehensive Survey
By integrating the perception capabilities of multimodal encoders with the generative power of Large Language Models (LLMs), Multimodal Large Language Models (MLLMs), exemplified by GPT-4V, have achieved great success in various multimodal tasks, pointing toward a promising pathway to artificial general intelligence. Despite this progress, the limited quality of multimodal data, poor performance on many complex downstream tasks, and inadequate evaluation protocols continue to hinder the reliability and broader applicability of MLLMs across diverse domains. Inspired by the human ability to leverage external tools for enhanced reasoning and problem-solving, augmenting MLLMs with external tools (e.g., APIs, expert models, and knowledge bases) offers a promising strategy to overcome these challenges. In this paper, we present a comprehensive survey on leveraging external tools to enhance MLLM performance. Our discussion is structured along four key dimensions about external tools: (1) how they can facilitate the acquisition and annotation of high-quality multimodal data; (2) how they can assist in improving MLLM performance on challenging downstream tasks; (3) how they enable comprehensive and accurate evaluation of MLLMs; (4) the current limitations and future directions of tool-augmented MLLMs. Through this survey, we aim to underscore the transformative potential of external tools in advancing MLLM capabilities, offering a forward-looking perspective on their development and applications. The project page of this paper is publicly available athttps://github.com/Lackel/Awesome-Tools-for-MLLMs.
Can Multi-modal (reasoning) LLMs detect document manipulation?
Document fraud poses a significant threat to industries reliant on secure and verifiable documentation, necessitating robust detection mechanisms. This study investigates the efficacy of state-of-the-art multi-modal large language models (LLMs)-including OpenAI O1, OpenAI 4o, Gemini Flash (thinking), Deepseek Janus, Grok, Llama 3.2 and 4, Qwen 2 and 2.5 VL, Mistral Pixtral, and Claude 3.5 and 3.7 Sonnet-in detecting fraudulent documents. We benchmark these models against each other and prior work on document fraud detection techniques using a standard dataset with real transactional documents. Through prompt optimization and detailed analysis of the models' reasoning processes, we evaluate their ability to identify subtle indicators of fraud, such as tampered text, misaligned formatting, and inconsistent transactional sums. Our results reveal that top-performing multi-modal LLMs demonstrate superior zero-shot generalization, outperforming conventional methods on out-of-distribution datasets, while several vision LLMs exhibit inconsistent or subpar performance. Notably, model size and advanced reasoning capabilities show limited correlation with detection accuracy, suggesting task-specific fine-tuning is critical. This study underscores the potential of multi-modal LLMs in enhancing document fraud detection systems and provides a foundation for future research into interpretable and scalable fraud mitigation strategies.
Continuous Bangla Sign Language Translation: Mitigating the Expense of Gloss Annotation with the Assistance of Graph
Millions of individuals worldwide are affected by deafness and hearing impairment. Sign language serves as a sophisticated means of communication for the deaf and hard of hearing. However, in societies that prioritize spoken languages, sign language often faces underestimation, leading to communication barriers and social exclusion. The Continuous Bangla Sign Language Translation project aims to address this gap by enhancing translation methods. While recent approaches leverage transformer architecture for state-of-the-art results, our method integrates graph-based methods with the transformer architecture. This fusion, combining transformer and STGCN-LSTM architectures, proves more effective in gloss-free translation. Our contributions include architectural fusion, exploring various fusion strategies, and achieving a new state-of-the-art performance on diverse sign language datasets, namely RWTH-PHOENIX-2014T, CSL-Daily, How2Sign, and BornilDB v1.0. Our approach demonstrates superior performance compared to current translation outcomes across all datasets, showcasing notable improvements of BLEU-4 scores of 4.01, 2.07, and 0.5, surpassing those of GASLT, GASLT and slt_how2sign in RWTH-PHOENIX-2014T, CSL-Daily, and How2Sign, respectively. Also, we introduce benchmarking on the BornilDB v1.0 dataset for the first time. Our method sets a benchmark for future research, emphasizing the importance of gloss-free translation to improve communication accessibility for the deaf and hard of hearing.
Curated by yukajii.com |