Machine Translation Digest for Aug 11 2025
Here is today's selection of cs.CL papers focused on the capabilities and applications of large language models (LLMs). The papers explore various aspects of LLMs, including their performance in masked sentence prediction, their role in subjective language understanding, and innovative adaptations for educational purposes. Additionally, insights are drawn from human interpreting studies to enhance machine interpreting, and the potential for visual language models to understand complex visual narratives like manga is examined.
What am I missing here?: Evaluating Large Language Models for Masked Sentence Prediction
Transformer-based models primarily rely on Next Token Prediction (NTP), which predicts the next token in a sequence based on the preceding context. However, NTP's focus on single-token prediction often limits a model's ability to plan ahead or maintain long-range coherence, raising questions about how well LLMs can predict longer contexts, such as full sentences within structured documents. While NTP encourages local fluency, it provides no explicit incentive to ensure global coherence across sentence boundaries-an essential skill for reconstructive or discursive tasks. To investigate this, we evaluate three commercial LLMs (GPT-4o, Claude 3.5 Sonnet, and Gemini 2.0 Flash) on Masked Sentence Prediction (MSP) - the task of infilling a randomly removed sentence - from three domains: ROCStories (narrative), Recipe1M (procedural), and Wikipedia (expository). We assess both fidelity (similarity to the original sentence) and cohesiveness (fit within the surrounding context). Our key finding reveals that commercial LLMs, despite their superlative performance in other tasks, are poor at predicting masked sentences in low-structured domains, highlighting a gap in current model capabilities.
Large Language Models for Subjective Language Understanding: A Survey
Subjective language understanding refers to a broad set of natural language processing tasks where the goal is to interpret or generate content that conveys personal feelings, opinions, or figurative meanings rather than objective facts. With the advent of large language models (LLMs) such as ChatGPT, LLaMA, and others, there has been a paradigm shift in how we approach these inherently nuanced tasks. In this survey, we provide a comprehensive review of recent advances in applying LLMs to subjective language tasks, including sentiment analysis, emotion recognition, sarcasm detection, humor understanding, stance detection, metaphor interpretation, intent detection, and aesthetics assessment. We begin by clarifying the definition of subjective language from linguistic and cognitive perspectives, and we outline the unique challenges posed by subjective language (e.g. ambiguity, figurativeness, context dependence). We then survey the evolution of LLM architectures and techniques that particularly benefit subjectivity tasks, highlighting why LLMs are well-suited to model subtle human-like judgments. For each of the eight tasks, we summarize task definitions, key datasets, state-of-the-art LLM-based methods, and remaining challenges. We provide comparative insights, discussing commonalities and differences among tasks and how multi-task LLM approaches might yield unified models of subjectivity. Finally, we identify open issues such as data limitations, model bias, and ethical considerations, and suggest future research directions. We hope this survey will serve as a valuable resource for researchers and practitioners interested in the intersection of affective computing, figurative language processing, and large-scale language models.
CoDAE: Adapting Large Language Models for Education via Chain-of-Thought Data Augmentation
Large Language Models (LLMs) are increasingly employed as AI tutors due to their scalability and potential for personalized instruction. However, off-the-shelf LLMs often underperform in educational settings: they frequently reveal answers too readily, fail to adapt their responses to student uncertainty, and remain vulnerable to emotionally manipulative prompts. To address these challenges, we introduce CoDAE, a framework that adapts LLMs for educational use through Chain-of-Thought (CoT) data augmentation. We collect real-world dialogues between students and a ChatGPT-based tutor and enrich them using CoT prompting to promote step-by-step reasoning and pedagogically aligned guidance. Furthermore, we design targeted dialogue cases to explicitly mitigate three key limitations: over-compliance, low response adaptivity, and threat vulnerability. We fine-tune four open-source LLMs on different variants of the augmented datasets and evaluate them in simulated educational scenarios using both automatic metrics and LLM-as-a-judge assessments. Our results show that models fine-tuned with CoDAE deliver more pedagogically appropriate guidance, better support reasoning processes, and effectively resist premature answer disclosure.
Toward Machine Interpreting: Lessons from Human Interpreting Studies
Current speech translation systems, while having achieved impressive accuracies, are rather static in their behavior and do not adapt to real-world situations in ways human interpreters do. In order to improve their practical usefulness and enable interpreting-like experiences, a precise understanding of the nature of human interpreting is crucial. To this end, we discuss human interpreting literature from the perspective of the machine translation field, while considering both operational and qualitative aspects. We identify implications for the development of speech translation systems and argue that there is great potential to adopt many human interpreting principles using recent modeling techniques. We hope that our findings provide inspiration for closing the perceived usability gap, and can motivate progress toward true machine interpreting.
Re:Verse -- Can Your VLM Read a Manga?
Current Vision Language Models (VLMs) demonstrate a critical gap between surface-level recognition and deep narrative reasoning when processing sequential visual storytelling. Through a comprehensive investigation of manga narrative understanding, we reveal that while recent large multimodal models excel at individual panel interpretation, they systematically fail at temporal causality and cross-panel cohesion, core requirements for coherent story comprehension. We introduce a novel evaluation framework that combines fine-grained multimodal annotation, cross-modal embedding analysis, and retrieval-augmented assessment to systematically characterize these limitations. Our methodology includes (i) a rigorous annotation protocol linking visual elements to narrative structure through aligned light novel text, (ii) comprehensive evaluation across multiple reasoning paradigms, including direct inference and retrieval-augmented generation, and (iii) cross-modal similarity analysis revealing fundamental misalignments in current VLMs' joint representations. Applying this framework to Re:Zero manga across 11 chapters with 308 annotated panels, we conduct the first systematic study of long-form narrative understanding in VLMs through three core evaluation axes: generative storytelling, contextual dialogue grounding, and temporal reasoning. Our findings demonstrate that current models lack genuine story-level intelligence, struggling particularly with non-linear narratives, character consistency, and causal inference across extended sequences. This work establishes both the foundation and practical methodology for evaluating narrative intelligence, while providing actionable insights into the capability of deep sequential understanding of Discrete Visual Narratives beyond basic recognition in Multimodal Models. Project Page: https://re-verse.vercel.app
Curated by yukajii.com |